
http://ijopaar.com; 2024, Vol. 2(1); pp. 01-10; ISSN: 2455-474X   

 

Impact Factor (SJIF): 6.03        
Page | 1  

 

Analytical Solutions of Porous System of Bearings  

Dr. Mohammad Miyan 

Professor, Department of Mathematics, 

Shia P. G. College, University of Lucknow, 

  Lucknow, Uttar Pradesh, India -226020 

Email: miyanmohd@rediffmail.com 

The second order rotatory theory of hydrodynamic lubrication was founded on the expression 

obtained by retaining the terms containing first and second powers of rotation number in the extended 

generalized Reynolds equation. In the present paper, there are some new excellent fundamental 

solutions with the help of geometrical figures, expressions, calculated tables and graphs for the 

porous bearings in the second order rotator theory of hydrodynamic lubrication. The analysis of 

equations for pressure and load capacity, tables and graphs reveal that pressure and load capacity 

are not independent of viscosity and increases slightly with viscosity. Also the pressure and load 

capacity both increases with increasing values of rotation number. In the absence of rotation, the 

equation of pressure and load capacity gives the classical solutions of the classical theory of 

hydrodynamic lubrication. The relevant tables and graphs confirm these important investigations in 

the present paper. 

1. INTRODUCTION 

In the theory of hydrodynamic lubrication, two dimensional classical theory
4, 10  

was first given by 

Osborne Reynolds
11

. In 1886, in the wake of a classical experiment by Beauchamp Tower
12

, he 

formulated an important differential equation, which was known as: Reynolds Equation
11

. The 

formation and basic mechanism of fluid film was analyzed by that experiment on taking some 

important assumptions given as: 

[a] The fluid film thickness is very small as compare to the axial and longitudinal dimensions of fluid 

film. 

[b] If the lubricant layer is to transmit pressure between the shaft and the bearing, the layer must have 

varying thickness. 

Later Osborne Reynolds himself derived an improved version of Reynolds Equation known as: 

“Generalized Reynolds Equation”7, 10
, which depends on density, viscosity, film thickness, surface and 

transverse velocities. 

The rotation
1 
of fluid film about an axis that lies across the film gives some new results in lubrication 

problems of fluid mechanics. The origin of rotation can be traced by certain general theorems related 

to vorticity in the rotating fluid dynamics. The rotation induces a component of vorticity in the 

direction of rotation of fluid film and the effects arising from it are predominant, for large Taylor’s 

Number, it results in the streamlines becoming confined to plane transverse to the direction of rotation 

of the film.  

The new extended version of “Generalized Reynolds Equation”7, 10 
 is said to be “Extended 

Generalized Reynolds Equation”1, 3
, which takes into account of the effects of the uniform rotation 
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about an axis that lies across the fluid film and depends on the rotation number M 
1
,  i.e. the square 

root of the conventional Taylor’s Number. The generalization of the classical theory of hydrodynamic 

lubrication is known as the “Rotatory Theory of Hydrodynamic Lubrication”1, 3
. 

The “First Order Rotatory Theory of Hydrodynamic Lubrication” and the “Second Order Rotatory 

Theory of Hydrodynamic Lubrication”3, 8
 was given by retaining the terms containing up to first and 

second powers of M 
1 
respectively by neglecting higher powers of M 

1
.    

The present paper analyzes about the pressure and load capacity in the porous bearings under the 

effect of second order rotation. These bearings are constructed by porous material and the lubricant 

flows out of the bearing surface with a definite velocity. These bearings are generally used in many 

useful devices, such as vacuum cleaners, extractor fans, motor car starters, hair dryers etc. These 

bearings are infinitely short. The geometry
4
 of bearings is described in figure

1
, of solid shaft in 

sintered metal bush and figure
2
, of shaft and bush opened up. 

 

                                                                                                          

FIG.1. Solid shaft in sintered metal bush of thickness H. 

 

 

FIG.2. Geometry of shaft and sintered bush opened up. 
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If the bearing is infinitely short
2
, then the pressure gradient in x-direction is much smaller than the 

pressure gradient in y-direction. In y-direction the gradient  𝜕𝑃𝜕𝑦  is of the order of (𝑃𝐿) and in the x-

direction, and is of order of (𝑃𝐵)  . If L << B then 

𝑃𝐿>> 
𝑃𝐵 , so  

𝜕𝑃𝜕𝑥 <<  
𝜕𝑃𝜕𝑦                                                                                                                        (1) 

Then the terms containing 𝜕𝑃𝜕𝑥  can be neglected as compared to the terms 
𝜕𝑃𝜕𝑦 containing in the 

expanded form of Generalized Reynolds Equation.  
2. NOMENCLATURE 

B : Total breadth of bearing parallel to the direction of motion 

C : Radial clearance 

D : Diameter of the bearing 

e : Eccentricity ratio 

H : Wall thickness of porous bearing 

h : Film thickness 

K : Constant 

L : Bearing length normal to the direction of motion 

M : Rotation number 

P : Pressure 

R : Radius of the bearing 

U : Sliding velocity 

W : Load capacity       

W
*
: Fluid velocity in z-direction 

 Wx: Component of load capacity in x-direction 

Wy: Component of load capacity in y-direction 

x : Co-ordinate along span of the bearing system 

y : Co-ordinate along length of the bearing system 

z : Co-ordinate across the fluid film 

ρ : Density of fluid 

µ  : Absolute viscosity of fluid 
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θ : Angular co-ordinate 

ɸ : Permeability                                                                                                                                                                        

3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

 In the second order rotatory theory of hydrodynamic lubrication the “Extended Generalized Reynolds 

Equation”7 
is given as: 

𝜕𝜕𝑥 [−√ 2µ𝑀𝜌  1𝑀 ( 𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  − 𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +  𝑐𝑜𝑠 ℎ√𝑀𝜌2µ ) 𝜕𝑃𝜕𝑥] + 𝜕𝜕𝑦 [−√ 2µ𝑀𝜌  1𝑀 ( 𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  − 𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +  𝑐𝑜𝑠 ℎ√𝑀𝜌2µ ) 𝜕𝑃𝜕𝑦] + 𝜕𝜕𝑥 [− ℎ𝑀 +
√ 2µ𝑀𝜌  1𝑀 ( 𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  + 𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +  𝑐𝑜𝑠 ℎ√𝑀𝜌2µ ) 𝜕𝑃𝜕𝑦] − 𝜕𝜕𝑦 [− ℎ𝑀 + √ 2µ𝑀𝜌  1𝑀 ( 𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  + 𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +  𝑐𝑜𝑠 ℎ√𝑀𝜌2µ ) 𝜕𝑃𝜕𝑥] =
− 𝑈2 𝜕𝜕𝑥 [𝜌√ 2µ𝑀𝜌  ( 𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  + 𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +  𝑐𝑜𝑠 ℎ√𝑀𝜌2µ )] − 𝑈2 𝜕𝜕𝑦 [−𝜌√ 2µ𝑀𝜌  ( 𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ − 𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ −  𝑐𝑜𝑠 ℎ√𝑀𝜌2µ )] − 𝜌𝑊∗            (2) 

The Extended Generalized Reynolds Equation in view of second order rotatory theory of 

hydrodynamic lubrication, in ascending powers of rotation number M 
1 

and by retaining the terms 

containing up to second powers of M and neglecting higher powers of M, can be written as:    

𝜕𝜕𝑥 [− ℎ312µ (1 − 17𝑀2𝜌2ℎ41680µ2 ) 𝜌 𝜕𝑃𝜕𝑥] + 𝜕𝜕𝑦 [− ℎ312µ (1 − 17𝑀2𝜌2ℎ41680µ2 ) 𝜌 𝜕𝑃𝜕𝑦] 𝜕𝜕𝑥 [− 𝑀𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 ) 𝜕𝑃𝜕𝑦] −𝜕𝜕𝑦 [− 𝑀𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 ) 𝜕𝑃𝜕𝑥] = − 𝜕𝜕𝑥 [𝜌𝑈2 {ℎ − 𝑀2𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )}]    − 𝜕𝜕𝑦 [𝑀𝜌2𝑈2 {− ℎ312µ (1 −17𝑀2𝜌2ℎ41680µ2 )}] − 𝜌𝑊∗                                                                                                                            (3)  

Taking                                                                                                                                                                                       

h=h(x), U=-U, P=P(y) and W
*
 = - 

𝜕𝑃𝜕𝑧│ z=0 
ɸµ                                                                                      (4) 

  Where 
𝜕𝑃𝜕𝑧 the pressure gradient at the bearing surface and ɸ is the property called permeability, 

which varies with porosity and size of pores. From the requirements of continuity, we have for the 

porous matrix ɸµ  𝛻W 
*
 = 𝛻2

P=0 i.e., 𝛻2
P=0                                                                                                              (5) 

The problem then is to solve the governing equation (2) for the pressures in oil film simultaneously 

with that of Laplace for the porous matrix with a common pressure gradient 
𝜕𝑃𝜕𝑧 at the boundary, we 

have 𝜕2𝑃𝜕𝑥2 + 𝜕2𝑃𝜕𝑦2 +  𝜕2𝑃𝜕𝑧2   = 0                                                                                                                        (6) 

We have two assumptions to solving the equations (2) and (6) as follows: 

(A)The bearing is infinitely short. 

(B) 
𝜕𝑃𝜕𝑧 is linear across the matrix and is zero at the outer surface of the porous bearing shell. 
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From (A), (B), we have 𝜕2𝑃𝜕𝑥2 =0, 
𝜕2𝑃𝜕𝑧2=K (constant), 𝜕2𝑃𝜕𝑦2 = -K                                                                                            (7) 

From (4), we have 𝜕𝑃𝜕𝑧│ Z=0   = KH = 
𝜕2𝑃𝜕𝑦2│Z=0 H                                                                                                           (8) 

Now the equation (2) becomes [− ℎ312µ (1 − 17𝑀2𝜌2ℎ41680µ2 ) 𝜌] 𝑑2𝑃𝑑𝑦2 + [ 𝑀𝜌2120µ2 𝑑𝑑𝑥 (ℎ5 − 31𝑀2𝜌2ℎ93024µ2 )] 𝑑𝑃𝑑𝑦 = 𝑑𝑑𝑥 [𝜌𝑈2 {ℎ − 𝑀2𝜌2ℎ5120µ2 (1 −31𝑀2𝜌2ℎ43024µ2 )}]    − 𝜌(− 𝑑𝑃𝑑𝑧 │𝑧=0 ɸµ)                                                                                                  (9) 

The film thickness ‘h’ and ‘y’ can be taken as: 

h=C (1+ecos θ), x=R θ                                                                                                            (10) 

Where θ being measured from x-direction.   

For the determination of pressure the boundary conditions are as follows: 

P=0, y = ± 
𝐿2                                                                                                                           (11) 

4. DETERMINATION OF PRESSURE 

The solution of the differential equation (9) under the boundary condition (11) gives the pressure for 

porous bearing as follows: 

𝑃 =   (3µ𝐶𝑈𝑒𝑠𝑖𝑛 𝜃 + 12𝐾𝐻ɸ𝑅)(𝐿2 − 4𝑦2)4(1 + 𝑒𝑐𝑜𝑠𝜃)3𝑅 + 𝜌𝐶𝑒𝑠𝑖𝑛𝜃(𝑈µ + 4𝐾𝐻ɸ)(𝐿2𝑦 − 4𝑦3)8µ𝑅(1 + 𝑒𝑐𝑜𝑠𝜃)2 𝑀+ (53𝑈µ𝜌2𝐶𝑒𝑠𝑖𝑛𝜃(1 + 𝑒𝑐𝑜𝑠𝜃) − 68𝑅𝐾𝐻ɸ𝜌2(1 + 𝑒𝑐𝑜𝑠𝜃)(𝐿2 − 4𝑦2)2240µ2𝑅  𝑀2                  
                                                                                                                                               (12) 

Taking the terms of pressure equation (12) as:  𝐴 =  (3µ𝐶𝑈𝑒𝑠𝑖𝑛 𝜃+12𝐾𝐻ɸ𝑅)(𝐿2−4𝑦2)4(1+𝑒𝑐𝑜𝑠𝜃)3𝑅                                                                                         (13) 

𝐵 =   𝜌𝐶𝑒𝑠𝑖𝑛𝜃(𝑈µ+4𝐾𝐻ɸ)(𝐿2𝑦−4𝑦3)8µ𝑅(1+𝑒𝑐𝑜𝑠𝜃)2                                                                                                       (14) 

𝐶 = (53𝑈µ𝜌2𝐶𝑒𝑠𝑖𝑛𝜃(1+𝑒𝑐𝑜𝑠𝜃)−68𝑅𝐾𝐻ɸ𝜌2(1+𝑒𝑐𝑜𝑠𝜃)(𝐿2−4𝑦2)2240µ2𝑅                                                       (15) 

Hence the equation for pressure takes the form: 𝑃 = 𝐴 + 𝐵𝑀 + 𝐶𝑀2.                              (16)  

5. DETERMINATION OF LOAD CAPACITY 

The load capacity for porous bearing is given by 

W = √𝑊𝑥2  + 𝑊𝑦2                                                                                                                (17) 
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Where Wx and Wy are the components of the load capacity in x-direction and y-direction respectively. 

 

FIG.3. Geometry for the components of load capacity. 

Wx = -2 ∫ ∫ 𝑃 𝐶𝑜𝑠𝜃 𝑅 𝑑𝜃 𝑑𝑦𝐿/20𝜋0                                                                                                    (18) 

Wy = 2 ∫ ∫ 𝑃 𝑆𝑖𝑛𝜃 𝑅 𝑑𝜃 𝑑𝑦𝐿/20𝜋0                                                                                                       (19) 

The Wx and Wy in the increasing values of M are given by 𝑊𝑥  = − { µ𝑈𝑒2  𝐶2(1 − 𝑒2)2 + 𝐾𝐻ɸ𝑅𝜋𝑒(1 − 𝑒2)52} 𝐿3 + 𝜌𝐶(µ𝑈 + 4𝐾𝐻ɸ)64µ  {1𝑒 𝑙𝑜𝑔 1 + 𝑒1 − 𝑒 − 21 − 𝑒2} 𝐿4 𝑀     
+ {106µ𝑈𝑒2𝜌2𝐶2 − 204𝑅𝐶𝐾𝐻ɸ𝜌2𝜋𝑒13440µ2 } 𝐿3𝑀2                                                                                (20)    

         

                                                                                                          

 𝑊𝑦  = { µ𝑈𝜋𝑒  4𝐶2(1 − 𝑒2)3/2 + 4𝐾𝐻ɸ𝑅(1 − 𝑒2)2} 𝐿3 + 𝜋𝑒𝜌𝐶(µ𝑈 + 4𝐾𝐻ɸ)128µ(1 − 𝑒2)3/2  𝐿4 𝑀+ {53µ𝑈𝜌2𝐶2𝜋𝑒 − 272𝑅𝐶𝐾𝐻ɸ𝜌24480µ2 } 𝐿3𝑀2                                                                            (21) 

 

6. CALCULATION TABLES 

By taking the values of different mathematical terms in C.G.S. system as follows: 

 θ=30
o
, µ=0.0002, C=0.0067, ρ=0.9, U=10

2
, h=0.00786, y=1, H=0.05, ɸ=0.0025, R=3.35; the 

calculated values of pressure and load capacity with respect to M by taking µ= constant = 0.0002, are 

given by    Table 1. 
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Table 1.        

e↓ L/D↓ M→ 0.2 0.4 0.6 0.8 1.0 

0.2 0.5 P 844.7764864 897.5040214 950.1928974 10002.844914 1055.458273 

  W 318359.2200 318360.4200 318362.3400 318364.9997 318368.3960 

0.2 1.0 P 4782.680583 5081.196179 5379.496305 5677.580961 5975.450148 

  W 2546874.560 2546884.912 2546901.120 2546923.118 2546951.093 

0.9 0.5 P 1185.885315 1423.933488 1662.326572 1901.064569 2140.147477 

  W 402079.4716 402082.259 402085.7945 402090.0741 402095.0935 

0.9 1.0 P 6713.859539 8061.563214 9411.219599 10762.82869 12116.3905 

  W 3216635.899 3216658.291 3216686.69 3216721.014 3216761.365 

 

Also by taking the values of different mathematical terms in C.G.S. system as follows: 

 θ=30
o
, e=0.9, C=0.0067, ρ=0.9, U=10

2
, h=0.00786, H=0.05, ɸ=0.0025, R=3.35, L/D=1; the 

calculated values of pressure and load capacity with respect to µ by taking M=constant=1.0, are given 

by Table 2. 

 

Table 2.   

 

µ 0.0002 0.0003 0.0004 0.0005 0.0006 

P 12091.54659 12653.37738 13218.21638 13784.39107 14351.27039 

W 3217061.181 4825306.167 6433586.076 8041213.813 9650176.837 

 

7. GRAPHS 

 

FIG.4. Variation of pressure with respect to M for e=0.2, 0.9; L/D=0.5. 
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FIG.5. Variation of pressure with respect to M for e=0.2, 0.9; L/D=1.0. 

 

 

FIG.6. Variation of load capacity with respect to M for e=0.9; L/D=0.5. 

 

 

FIG.7. Variation of load capacity with respect to M for e=0.9; L/D=1.0. 
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FIG.8. Variation of pressure with respect to viscosity for e=0.9; L/D=1.0. 

 

 

FIG.9. Variation of load capacity with respect to viscosity for e=0.9; L/D=1.0. 

 8. DISCUSSION   

The classical pressure equation for porous bearing was  𝑃 = 3𝑈µ𝑒 𝑠𝑖𝑛𝜃𝑅𝐶2[ (1+𝑒 𝑐𝑜𝑠𝜃)3+12𝜓]  (𝐿24 − 𝑦2) , 𝜓 = 𝐻ɸ𝐶3                                                                                   (22)   

This equation does not give infinite pressure at θ=π if e=1 due to the presence of the term (12ψ), 

whereas the pressure equation of second order rotatory theory given by (12) shows that it gives 

infinite pressure at θ=π if e=1.The equation (22) shows that pressure increases linearly with µ, 

whereas the equation (12), table-2, fig.8 and fig.9 shows that in second order rotatory theory, the 

pressure does not changes linearly with µ , it slightly increases with µ  due to presence of the 

permeability factor in the numerator of term A, presence of µ  in both numerator and denominator of 

term B and very small effect due to µ
2
 in the denominator and µ  in numerator of term C. We also get 

the same effect on load capacity shown by the equation (20), (21) and table-2. 

The equations of pressure and load capacity shows that both increases with rotation number M. The 

term B of first order rotation gives much effect on P and W as compare to term C of second order 

rotation. These results are shown with the help of table-1 and fig.4-7.                            

 

9. CONCLUSIONS 

The variation of pressure and load capacity with respect to viscosity, when M is constant and with 

respect to rotation number M, when viscosity is constant; are shown by tables and graphs. Hence in 
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the second order rotatory theory of hydrodynamic lubrication, the pressure and load capacity are not 

independent of viscosity µ and slightly increases with µ , when M is constant; also, the pressure and 

load capacity both increases with increasing values of M, when viscosity is taken as constant. On 

taking (M=0) in the expression of pressure and load capacity, we get the classical solutions. 
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