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Abstract 

The second order rotatory theory of hydrodynamic lubrication was founded on the expression obtained by 

retaining the terms containing first and second powers of rotation number in the extended generalized 

Reynolds equation. In the present paper, there are some new excellent fundamental solutions with the 

help of geometrical figures, expressions, calculated tables and graphs for the infinitely long journal 

bearings in the second order rotatory theory of hydrodynamic lubrication. The analysis of equations for 

pressure and load capacity, tables and graphs reveal that pressure and load capacity are not independent 

of viscosity and increases slightly with viscosity. Also the pressure and load capacity both increases with 

increasing values of rotation number. In the absence of rotation, the equation of pressure and load 

capacity gives the classical solutions of the classical theory of hydrodynamic lubrication. The relevant 

tables and graphs confirm these important investigations in the present paper. 
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1. Introduction 

1.1 Journal bearing: 

In general the bearings [10, 11] can be divided in to four categories: 

(1) Rolling element bearings for example; ball, cylindrical, spherical or tapered roller and needle etc.  

(2) Dry bearings for example; plastic bushings, coated metal bushings etc.  

(3) Semi-lubricated bearings for example; oil-impregnated bronze bushings etc. 

(4) Fluid film bearings for example; crankshaft bearings etc. 

Except from some radial-configuration aircraft engines, almost all piston engines use fluid film bearings 

[7]. This is true for the crankshaft and sometimes in the camshaft, although often the later runs directly in 

the engine structure. Here we have to discuss the working of the fluid film working and to demonstrate 

how engine designers are reducing friction losses through bearing technology [10]. The fluid film 

bearings operate by generating, as a by-product of the relative motion between the shaft and the bearing, a 

very thin film of lubricant at a sufficiently high pressure to match the applied load, as long as that load is 

within the bearing capacity [7]. Fluid film bearings represent a form of scientific process, by virtue of 

providing very large load carrying capabilities in a compact, lightweight implementation, and unlike the 

other classes, in most cases can be designed for infinite life. The fluid film bearings operate in any of the 

three modes: 

(a) Fully-hydrodynamic 

(b) Boundary 

(c) Mixed. 

In fully hydrodynamic or "full-film" [7, 11] lubrication, the moving surface of the journal is completely 

separated from the bearing surface by a very thin film of lubricant. The applied load causes the centerline 

of the journal to be displaced from the centerline of the bearing. This eccentricity creates a circular 

"wedge" in the clearance space. 
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The lubricant, by virtue of its viscosity, clings to the surface of the rotating journal, and is drawn into the 

wedge, creating a very high pressure, which acts to separate the journal from the bearing to support the 

applied load. 

The bearing eccentricity is expressed as the centerline displacement divided by the radial clearance. The 

bearing eccentricity increases with applied load and decreases with greater journal speed and viscosity. 

The hydrodynamic pressure has no relationship at all to the engine oil pressure, except that if there is 

insufficient engine oil pressure to deliver the required copious volume of oil into the bearing, the 

hydrodynamic pressure mechanism will fail and the bearing and journal will be destroyed. The pressure 

distribution in the hydrodynamic region of a fluid film bearing increases from quite low in the large 

clearance zone to its maximum at the point of minimum film thickness for the incompressible fluid like 

oil is pulled into the converging "wedge" [4, 5] zone of the bearing. However, this radial profile does not 

exist homogeneously across the axial length of the bearing. If the bearing has sufficient width, the profile 

will have a nearly flat shape across the high-pressure region. 

The second mode of bearing operation is boundary lubrication. In boundary lubrication, the "peaks" of the 

sliding surfaces i.e., journal and bearing, are touching each other, but there is also an extremely thin film 

of the lubricant only a few molecules thick which is located in the surface "valleys". That thin film tends 

to reduce the friction from what it would be if the surfaces were completely dry. 

The mixed mode is a region of transition between boundary and full-film lubrication. The surface peaks 

on the journal and bearing surfaces partially penetrate the fluid film and some surface contact occurs, but 

the hydrodynamic pressure is starting to increase. 

When motion starts, the journal tries to climb on the wall of the bearing due to the metal-to-metal friction 

between the two surfaces. 

If there is an adequate supply of lubricant, the 

motion of the journal starts to drag the lubricant 

into the wedge area and hydrodynamic lubrication 

begins to occur along with the boundary 

lubrication. 

If we assume that the load and viscosity remain 

relatively constant during this startup period, then 

as revolution per minute increases, the 

hydrodynamic operation strengthens until it is 

fully developed and it moves the journal into its 

steady state orientation. The direction of the 

eccentricity and the minimum film thickness, do 

not occur in line with the load vector and are 

angularly displaced from the load.  

There are also some other form of fluid-film 

lubrication, which includes the squeeze-film 

lubrication [10] i.e., the piston engine etc. Figure-

1 (Hydrodynamic journal bearing) 

 

Squeeze-film action is based on the fact that a given amount of time is required to squeeze the lubricant 

out of a bearing axially, thereby adding to the hydrodynamic pressure, and therefore to the load capacity. 

Since there is little or no significant rotating action in the wrist-pin bores, squeeze-film hydrodynamic 

lubrication is the prevailing mechanism which separates wrist pins from their bores in the rods and 

pistons. 

The figure-1 shows a hydrodynamic journal bearing and a journal, are rotating in the clockwise direction. 

The rotation of the journal causes pumping of the lubricant that flows around the bearing in the direction 

of rotation. If there is no force applied to the journal then its position remains unaltered and concentric to 

the bearing position. The loaded journal moves from the concentric position and forms converging gap 

between the journal surfaces and bearing. Now the movement of journal forced the lubricant to squeeze 
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through the gap generating the pressure. The pressure falls to the cavitations pressure [10] i.e., closer to 

the atmospheric pressure in the gap in which the cavitations forms. 

  

 

Figure-2 (Forces acting on a unit volume of an element of hydrodynamic lubrication film) 

 

In general the two types of cavitations are form in the journal bearing. 

(a) Gaseous cavitations: This is associated with air and gases mixed with lubricant. If the pressure of 

lubricant falls below the atmospheric pressure then the gases come out to form the cavitations. 

(b) Vapors cavitations: This is formed when the load applied to the bearing fluctuates at the high 

frequency. The pressure of fluid falls rapidly and causes the cavitations due to fast evaporation.     

Now the fluid pressure creates the supporting force which separates the journal from the surface of the 

bearing. The hydrodynamic force of friction and force of fluid pressure counterbalance the external load. 

So the position of journal can be determined by these forces. In the hydrodynamic regime, the journal 

climbs in the rotational direction. If the working of journal is in the boundary and mixed lubrication then 

the hydrodynamic pressure ends and the journal climbs in the opposite to the rotational direction. 

1.2 Second Order Rotatory Theory of Hydrodynamic Lubrication:    

In the theory of hydrodynamic lubrication, two dimensional classical theories [4, 10] were first given by 

Osborne Reynolds [11]. In 1886, in the wake of a classical experiment by Beauchamp Tower [12], he 

formulated an important differential equation, which was known as: Reynolds Equation [11]. The 

formation and basic mechanism of fluid film was analyzed by that experiment on taking some important 

assumptions given as: 

(1.1)The fluid film thickness is very small as compare to the axial and longitudinal dimensions of fluid 

film. 

(1.2)If the lubricant layer is to transmit pressure between the shaft and the bearing, the layer must have 

varying thickness. 

Later Osborne Reynolds himself derived an improved version of Reynolds Equation known as: 

“Generalized Reynolds Equation” [7, 10], which depends on density, viscosity, film thickness, surface 

and transverse velocities. The rotation [1] of fluid film about an axis that lies across the film gives some 

new results in lubrication problems of fluid mechanics. The origin of rotation can be traced by certain 

general theorems related to vorticity in the rotating fluid dynamics. The rotation induces a component of 

vorticity in the direction of rotation of fluid film and the effects arising from it are predominant, for large 
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Taylor’s Number, it results in the streamlines becoming confined to plane transverse to the direction of 

rotation of the film.  

The new extended version of “Generalized Reynolds Equation” [7, 10] is said to be “Extended 

Generalized Reynolds Equation”[1,3], which takes into account of the effects of the uniform rotation 

about an axis that lies across the fluid film and depends on the rotation number M [1], i.e. the square root 

of the conventional Taylor’s Number. The generalization of the classical theory of hydrodynamic 

lubrication is known as the “Rotatory Theory of Hydrodynamic Lubrication” [1, 3]. The “First Order 

Rotatory Theory of Hydrodynamic Lubrication” and the “Second Order Rotatory Theory of 

Hydrodynamic Lubrication” [3, 8] was given by retaining the terms containing up to first and second 

powers of M respectively by neglecting higher powers of M. In the exponentially inclined slider [14], the 

film thickness h increases exponentially with the distance. The geometry of exponentially inclined slider 

is given by figure (1).  

The figure shows that the runner move in the (-y) direction, which implies that the variation of pressure in 

x-direction is very small as compared to the variation of pressure in y-direction. So the terms containing 

pressure gradient ∂p/∂x can be neglected as compared to the terms containing ∂p/∂y in the differential 

equation of pressure, hence P may be taken as function of y alone. 

2. Governing Equations and Boundary Conditions: 

 In the second order rotatory theory of hydrodynamic lubrication the “Extended Generalized Reynolds 

Equation” [7] is given by equation (1). Let us consider the mathematical terms as follows:  𝜕𝜕𝑥 [  
 −√2µ𝑀𝜌 1𝑀 ( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  −  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) 𝜕𝑃𝜕𝑥]  
 + 𝜕𝜕𝑦 [  

 −√2µ𝑀𝜌 1𝑀 ( 
𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  −  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) 𝜕𝑃𝜕𝑦]  

 
 

+ 𝜕𝜕𝑥 [  
 − ℎ𝑀 + √2µ𝑀𝜌 1𝑀 ( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  +  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) 𝜕𝑃𝜕𝑦]  
 

− 𝜕𝜕𝑦 [  
 − ℎ𝑀 + √2µ𝑀𝜌 1𝑀 ( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  +  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) 𝜕𝑃𝜕𝑥]  
 
 

= −𝑈2 𝜕𝜕𝑥 [  
 𝜌√2µ𝑀𝜌 ( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  +  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) ]  
 
 

−𝑈2 𝜕𝜕𝑦 [  
 −𝜌√2µ𝑀𝜌 ( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ −  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ −   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) ]  
 − 𝜌𝑊∗                                                         (1) 

 

Where x, y and z are coordinates, U is the sliding velocity, P is the pressure, ρ is the fluid density, µ is the 

viscosity and W* is fluid velocity in z-direction. The Extended Generalized Reynolds Equation in view of 

second order rotatory theory of hydrodynamic lubrication, in ascending powers of rotation number M and 
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by retaining the terms containing up to second powers of M and neglecting higher powers of M, can be 

written as equation (2). For the case of pure sliding 𝑊∗ = 0, so we have the equation as given: 𝜕𝜕𝑥 [− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )𝜌 𝜕𝑃𝜕𝑥] + 𝜕𝜕𝑦 [− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )𝜌 𝜕𝑃𝜕𝑦]
+ 𝜕𝜕𝑥 [−𝑀𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )𝜕𝑃𝜕𝑦] − 𝜕𝜕𝑦 [−𝑀𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )𝜕𝑃𝜕𝑥]
= − 𝜕𝜕𝑥 [𝜌𝑈2 {ℎ − 𝑀2𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )}]   
− 𝜕𝜕𝑦 [𝑀𝜌2𝑈2 {− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )}] 

                                                                                                                                                                                     

(2)   𝜕𝜕𝑦 [− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )𝜌 𝜕𝑃𝜕𝑦] + 𝜕𝜕𝑥 [−𝑀𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )𝜕𝑃𝜕𝑦]
= − 𝜕𝜕𝑥 [𝜌𝑈2 {ℎ − 𝑀2𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )}]   
− 𝜕𝜕𝑦 [𝑀𝜌2𝑈2 {− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )}] 

                                                                                                                                                               (3) 

Taking  h=h(y), U=-U, P=P(y)                                                                                                               (4) 𝑑𝑑𝑦 [− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )𝜌 𝑑𝑃𝑑𝑦] = 𝜕𝜕𝑦 [𝑀𝜌2𝑈2 {− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )}]    
                                                                                                                                                                (5) 

The film thickness ‘h’ and ‘y’ can be taken as: 

h=C (1+ecos θ), y=R θ                                                                                                                           (6)                                        

Where θ being measured from y-direction.   

For the determination of pressure distribution including the negative regions, the boundary conditions are 

as follows: 

P=Pa at ψ=0 and    P (ψ=0) =P (ψ=2π),                                                                                             (7) 

where Pa is the atmospheric pressure.    

3. Determination of Pressure: 

 

Integrating equation (5) under the boundary conditions (7), we get the equation for pressure 𝑃 = 𝑀𝜌𝑈𝑅𝜃2 − 12µ𝑅𝜌 {𝐴(𝜓) + 𝐾𝐶(𝜃 + 𝑒 sin 𝜃)}𝐶1+ 𝐶2                                                                            (8) 

Where C1 and C2 are constants of integration and ψ and θ are related by Sommerfeld substitutions. 𝐾 = 17𝑀2𝜌21680µ2                                                                                                                                                           (9) cos𝜓 = 𝑒 + cos 𝜃1 + 𝑒 sin𝜃                                                                                                                                                (10) 

𝐴(𝜓) = 𝜓 − 2𝑒 sin𝜓 + 𝜓2  𝑒2 + 𝑒2 sin 2𝜓 4    (1 − 𝑒2)52                                                                                                    (11) 

With the help of boundary conditions, we have 
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C2=Pa 𝐶1 = 𝑀𝑈𝜋𝜌212µ𝐾1                                                                                                                                                          (12) 𝐾1 = 𝜋(2 + 𝑒2)(1 − 𝑒2)52                                                                                                                                                       (13) 

By considering the variable functions as follows: 𝜌𝑈𝑅𝜃2 − 6𝜇𝑅𝜌𝑈(2 + 𝑒2)  𝐴(𝜓) = 𝐹(𝜃)                                                                                                                           (14) 17𝜌3𝑅𝑈𝐶4(1 − 𝑒2)5/2{2𝐴(𝜓) − 𝜃 − 𝑒 sin 𝜃}280µ(2 + 𝑒2)= 𝐺(𝜃)                                                                                     (15) 𝐹(𝜃) 𝑀 + 𝐺(𝜃) 𝑀2 = 𝑃𝑓                                                                                                                                      (16) 

The final equation for pressure distributions are given as: 𝑃 = 𝑃𝑎 + 𝐹(𝜃) 𝑀 + 𝐺(𝜃) 𝑀2 𝑖. 𝑒. , 𝑃 = 𝑃𝑎 + 𝑃𝑓                                                                                           (17) 

4. Determination of Load Capacity: 

 

The components of load capacity W x and W y in the direction of x-axis and y-axis are given as follows: 𝑊𝑥 = ∫ 𝐿𝑅𝑃 sin𝜃 𝑑𝜃𝜃2
𝜃1                                                                                                                                     (18) 

𝑊𝑦 = ∫ 𝐿𝑅𝑃 cos 𝜃 𝑑𝜃𝜃2
𝜃1                                                                                                                                     (19) 

 
 

Figure-3 (Geometry for the components of load capacity)  

 

So we have the expressions  
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𝑊𝑥 = 𝐿𝑅𝑃𝑎(cos𝜃1 −cos 𝜃2) + 𝑀 ∫ 𝐹(𝜃) sin𝜃 𝑑𝜃𝜃2
𝜃1  

+ 𝑀2   ∫ 𝐺(𝜃) sin 𝜃 𝑑𝜃𝜃2
𝜃1                                                (20) 

𝑊𝑦 = 𝐿𝑅𝑃𝑎(sin 𝜃2 −sin𝜃1) + 𝑀 ∫ 𝐹(𝜃) cos 𝜃 𝑑𝜃𝜃2
𝜃1  

+ 𝑀2   ∫ 𝐺(𝜃) cos 𝜃 𝑑𝜃𝜃2
𝜃1                                                  (21) 

5. Tables and Graphs: 

 

 

M 𝜃𝑜 𝜓𝑜 𝑃𝑓 

0.1 20 16.4 26.28 

0.1 300 50.28 3944.09 

0.1 80 68.83 1051.14 

0.1 180 180 236.39 

0.2 20 16.4 52.56 

0.2 300 50.28 7888.18 

0.2 80 68.83 2102.28 

0.2 180 180 472.78 

0.3 20 16.4 80.4 

0.3 300 50.28 11832.27 

0.3 80 68.83 3153.42 

0.3 180 180 709.17 

0.4 20 16.4 105.12 

0.4 300 50.28 15776.36 

0.4 80 68.83 4204.56 

0.4 180 180 945.56 

0.5 20 16.4 131.4 

0.5 300 50.28 19720.45 

0.5 80 68.83 5255.7 

0.5 180 180 1181.95 

Table-1 (Variation of Pf with respect to ψ by using the following values in C.G.S. system: e=0.2, 

C=0.0067, R=3.35, U=500, ρ=0.9, µ=0.0002)  
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Figure-4 (Variation of Pf with respect to ψ by using the following values in C.G.S. system: e=0.2, 

C=0.0067, R=3.35, U=500, ρ=0.9, µ=0.0002)  

 

 

6. Conclusions: 

The variation of pressure and load capacity for infinitely long journal bearings with respect to rotation 

number M and ψ, when viscosity is constant; are shown by tables and graphs. Which show that in the 

second order r27otatory theory of hydrodynamic lubrication, the pressure and load capacity for infinitely 

long  journal bearings both increases with increasing values of M, when viscosity is taken as constant. 

The variation of pressure for infinitely long journal bearings with respect to ψ shows that it first increases 

up to a maximum value from atmospheric pressure and then decreases, as ψ varies from 0 to 2π, which 

are shown by table and graphs. The equations for pressure and load capacity also show that they are not 

independent of viscosity µ and slightly increase with µ, when M is constant. On taking (M=0) in the 

expression of pressure and load capacity, we get the classical solutions. 
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