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Abstract 

The largest transport analysis of non-compressed fluid flow in porous sources based on a volume-

measurement of heat transfer was given in various studies. In the present paper there is an analysis 

and output of statistics based on the concept of medium term. This provides new insights and a way to 

analyze the flow of chaos in porous media. By taking the time variations of flow structures with the 

deviation, there are usually two ways to find and study macroscopic calculations. The first method 

was based on a user-time estimate followed by a volume measurement originally used by Kuwahara 

in 1998. The second method based on the concept of pre-measurement volume measurement used by 

Lee & Howell in 1987 and large transport statistics. established by these two methods are equal. 

Average transport statistics are found in the current paper. Estimated transport rates play an 

important role in analyzing transit media that can penetrate when turbulent flow occurs in the liquid 

phase. 
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1. Introduction 

We know that almost every fluid we see in everyday life is chaotic. Some common examples flow in 

cars, planes, buildings etc. Boundary layers and ambience around and behind other bodies such as 

cars, planes and buildings are more chaotic. And the flow and burning in the engines, both in the 

piston engines and the gas engines and combustors, is very chaotic. The air movement in the rooms is 

chaotic, at least near the walls where the jets are built into the wall. The flow of fluid into the 

boreholes is often turbulent. Therefore, when we calculate the flow of fluid there is likely to be 

confusion. In the chaos flow we usually divide the velocities in one time averaged part 𝑣̅ 𝑖, which is 

independent of time when the mean flow is steady, and one fluctuating part 𝑣̅′𝑖 , so that 𝑣̅𝑖  =  𝑣̅ 𝑖 + 𝑣̅′𝑖 . The intensity of turbulence presented is related to the energy that is turbulent kinetic energy 

(TKE). As is apparent from the name of this quantity, the value of TKE directly represents the 

‘strength’ of the turbulence in the flow. The turbulent flow has no suitable definition but it has a 

number of characteristic features as given: 

1.1 Irregularity  

Flow of Turbulent is unusual and unplanned but is governed by the Navier-Stokes equation. Flow 

contains a spectrum of different scales (eddy sizes). We do not have an accurate description of eddy 

chaos, but we think it is somewhere in the atmosphere at some point in the chaos and is eventually 

destroyed by the cascade process or by disintegration. It has an element of speed and length i.e., called 

velocity and length. A region covered by a large eddi may also close smaller eddies. The largest 

eddies belong to the flow pattern geometry, i.e., the thickness of the boundary layer, the width of the 

jet, etc. On the other side of the spectra we have very small eddies that disperse viscous forces 

(pressures) into thermal energy leading to temperature. increase. Even a random commotion 

determines and is explained by Navier-Stokes equation. 

1.2 Diffusivity  

In the turbulent flow increases the diffusivity. The disorder increases the exchange of pressure e.g. 

boundary layers, and thus reduces or delayed the separation in bluff bodies such as cylinders, airfoils 

and vehicles. Increased diffusivity increases resistance (wall collision) and heat transfer to internal 

flow such as channels and pipes. 
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1.3 Large Reynolds Numbers 

Flow of chaos occurs with a high number of Reynolds. For example, switching to a turbulent flowin 

pipes occurs that ReD ≃ 2300, and in boundary layers at Rex ≃ 11000-500000.  

1.4 Dissipation 

The turbulent flow disintegrates, meaning that the kinetic energy in the small eddies (dissipatives) is 

converted into thermal energy. Smaller eddies gain kinetic power in larger eddies. Larger eddies get 

their power from the biggest eddies and so on. Very large eddies release their energy from the central 

flow. This process of transferring energy from the largest moving scale (eddies) to the smallest is 

called the cascade process. 

1.5 Continuum 

Even if we have small moving scales in the flow they are a much larger process than the molecular 

scale and can treat flow as continuous. In liquid motion the concept of macroscopic transport of non-

compressed fluid flow to porous sources was used by Vafai & Tien [7] in 1981 based on a volume-

measurement of heat transfer measurement. The concept of space measurement in perforated media is 

based on the assumption that although liquid velocity and pressure may be abnormal on the 

permeability scale, the average local dimensions of these figures vary considerably. Macroscopic 

statistics are usually obtained by measuring the microscopic area above the Reproductive Elementary 

Volume (REV) of open media. REV should be a slightly different volume, resulting in sensible local 

properties. It means that the length of this volume must be large enough than the aperture scale. Also, 

the system size should be much larger than the REV length limit to avoid non-homogeneity i.e., 

Three-Dimensional Turbulent flow is always three-dimensional and unsteady. But when the equations 

are time averaged, we can treat the flow as two-dimensional flow in general. 

 𝑝 ≪ 𝐷 ≪ 𝐿 

Where p is the pore scale or microscopic length scale, D is the macroscopic length scale and L is the 

mega-scale or scale of the system as represented by figure-2. 

 

Figure-1. Turbulent flow 

 

Figure-2. Identification of different length scales. 
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Figure 3. Spherical representative elementary volume (REV). 

A schematic representation of a spherical REV consisting of a fixed solid phase saturated with a 

continuous fluid phase and is shown by the figure-2, here the solid phase is fixed, i.e., the solid phase 

does not change randomly if different ensembles are considered. The volume of the REV is constant 

i.e., independent of the space and its value is equal to the sum of the fluid and solid volumes inside the 

REV [4], i.e., 𝑉 = 𝑉𝑠 + 𝑉𝑓 

The spherical representative elementary volume is shown by figure-3. On taking the time fluctuations 

of the flow properties with spatial deviations, there are generally two methods for deriving and 

studying the macroscopic equations. The first method based on the time-average operator followed by 

the volume-averaging initially used by Kuwahara et al. [3] in 1998. The second method based on the 

concept of volume-averaging before time averaging  that was used by Lee & Howell [2] in 1987, and 

the macroscopic transport equations established by these two methods are equivalent. This initial 

method for the flow variables has been extended to the nonbuoyant heat transfer for the porous media 

by considering the phenomenon of time variations and spatial deviations was taken by Rocamora & 

Lemos [5] in 2000.Later, the researches on the natural convection flow on the porous layer, double-

diffusive convection for the turbulent flow and heat transfer in the porous media was given by de 

Lemos et al. in 2004. The numerical based analysis for applications of double-decomposition theory 

to buoyant flow was also reviewed by de Lemos [1]. 

2. Governing Equations 

The macroscopic instantaneous transfer equations for the incompressible fluid flow having the 

constant properties are given as: ∇. 𝑣̅ = 0                                                                                                                                         (1) 𝜌 ∇. (𝑣̅ . 𝑣̅ ) = −∇𝑃 + 𝜇∇2𝑣̅ + 𝜌 𝑔                                                                                             (2) ( 𝜌 𝐶𝑃) ∇. (𝑣̅  𝑇) = ∇. (λ ∇ 𝑇)                                                                                                    (3) 

Where 𝑣̅ ̅is the velocity vector, P is the pressure, μ is the viscosity of the fluid, ρ is the density of the 

fluid, 𝑔   is the acceleration vector due to gravity, 𝐶𝑃  is the specific heat, T is the temperature and λ is 
the thermal conductivity of the fluid. The mass fraction distribution related to chemical species e is 

governed by the transport equation given as:   𝛻. (𝜌 𝑣̅  𝑚𝑒 + 𝐽 𝑒) = 𝜌 𝑅𝑒                                                                                                            (4) 
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Where me is the mass fraction of component e, 𝑣̅  is the mass-averaged velocity of the fluid mixture, so 

we have  𝑣̅ = ∑ 𝑚𝑒 𝑒 𝑣̅ 𝑒                                                                                                                              (5) 

where 𝑣̅ 𝑒 is the velocity of species e. The mass diffusion flux  𝐽  𝑒  is due to velocity slip of the species 

e and is given as: 𝐽  𝑒 = 𝜌𝑒 (𝑣̅ 𝑒 −  𝑣̅ ) = −𝜌 𝐷𝑒 𝛻 𝑚𝑒                                                                                            (6) 

where  𝐷𝑒 is the diffusion coefficient of species e for the mixture. The equation (6) is also known as 

the Fick’s law. The Re represents the generation rate of species per unit mass. 

If the density ρ varies with the temperature T for the natural convection flow, the remaining density 

based on the Boussinesq concept will be given as: 𝜌𝑇 ≅ 𝜌 [1 − 𝛽(𝑇 − 𝑇𝑟)]                                                                                                            (7) 

where Tr is the temperature at reference value and β is the thermal expansion coefficient and is 

defined as: 𝛽 = − 1𝜌 (𝜕𝜌𝜕𝑇)𝑃                                                                                                                            (8) 

By using the equation (2) and (7), we get 𝜌 𝛻. (𝑣̅  𝑣̅ ) = −(𝛻 𝑃)∗ + 𝜇 𝛻2 𝑣̅ − 𝜌 𝑔 𝛽 (𝑇 − 𝑇𝑟 )                                                              (9) 

Where (𝛻 𝑃)∗ = 𝛻 𝑃 − 𝜌 𝑔 , represents the modified pressure gradient. 

From equation (3), we have the equation for fluid as: (𝜌 𝐶𝑝)𝐹 𝛻. (𝑣̅  𝑇𝐹) = 𝛻. (𝜆𝐹 𝛻 𝑇𝐹) +  𝑆𝐹                                                                                  (10) 

Also from equation (3), we have the equation for solid or porous matrix as: 𝛻. (𝜆𝑝 𝛻 𝑇𝑝) +  𝑆𝑝 = 0                                                                                                              (11) 

where the suffix F and p are used for fluid and porous matrix respectively. The factor 𝑆𝐹 or 𝑆𝑝 

vanishes in the absence of heat generation. The volume-averaging in the porous medium was given 

primarily by Slattery in 1967 [6] and later by others. It makes the concept of REV (representative 

elementary volume) and by using the concept, the equations are integrated. 

2.1 Volume and Time Average Operators 

The volume average of the general property term φ over REV for the porous medium was given by 

Gray et al. [2] in 1977 and is written as: [𝜑]𝑉 =  1𝛿𝑉  ∫ 𝜑  𝑑𝑉                                                                                                                  (12) 

where [𝜑]𝑉 is taken for any point surrounded by REV of size 𝛿𝑉. The average is given as:  [𝜑𝐹]𝑉 = 𝜙 [𝜑𝐹]𝑖                                                                                                                         (13) 

where the suffix ‘i’ is used for the intrinsic average and ϕ is the porosity of the medium and is defined 

as: 
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𝜙 = 𝛿𝑉𝐹𝛿𝑉                                                                                                                                            𝜑 = [𝜑]𝑖 + 𝜑𝑖                                                                                                                          (14) 

in addition to the condition that [𝜑𝑖]𝑖 = 0                                                                                                                                   (15) 

where 𝜑𝑖 is the spatial deviation of 𝜑 for the intrinsic average 𝜑𝑖. To derive the flow equations, we 

have to know the relation between the volume average of derivatives and derivatives of volume 

average. The relation between these two was presented by Gray et al. [2] in 1977. So we have [𝛻𝜑]𝑉 = 𝛻{𝜙(𝜑)𝑖} +  1𝛿𝑉   [∫ �̂� 𝜑 𝑑𝑠]𝛼𝑖                                                                            (16) 

[𝛻. 𝜑]𝑉 = 𝛻. {𝜙(𝜑)𝑖} + 1𝛿𝑉   [∫ �̂� . 𝜑 𝑑𝑠]𝛼𝑖                                                                       (17) 

[𝜕𝜑𝜕𝑡 ]𝑉 = 𝜕𝜕𝑡 {𝜙(𝜑)𝑖} − 1𝛿𝑉   [∫ �̂� . (𝑣̅ 𝑖 𝜑) 𝑑𝑠]𝛼𝑖                                                                (18) 

where αi,  𝑣̅ 𝑖 and �̂� are interfacial area, velocity and unit vector normal to αi respectively. If the porous 

substrate is fixed then 𝑣̅ 𝑖 = 0. But if the medium is rigid and heterogeneous then 𝛿𝑉𝐹 depends on the 

space and doesn’t depend on time as taken by Gray et al. [2]. The time average of  𝜑 is given as: �̅� =  1𝛿𝑡  ∫ 𝜑 𝑑𝑡                                                                                                                     (19)𝑡+𝛿𝑡
𝑡  

where 𝛿𝑡 is very small time interval as compared to �̅� but sufficient to calculate the turbulent 

fluctuations of 𝜑. Now the time decomposition will be taken as: 𝜑 = �̅� +  𝜑′                                                                                                                                 (20) 

with the condition that 𝜑′̅̅ ̅ = 0                                                                                                                                          (21) 

where 𝜑′ is the time fluctuation of 𝜑 with respect to �̅�. 
3. Time-Averaged Transport Equation 

Let us consider the following: 𝑣̅ = 𝑣̅ +  𝑣̅1, 𝑇 = �̅� + 𝑇1, 𝑃 = �̅� +  𝑃1                                                                               (22) 

The equations (1), (2) and (9) will be 𝛻. 𝑣̅ = 0                                                                                                                                (23) 𝜌𝛻. (𝑣̅  𝑣̅ ) = −(𝛻�̅�)∗ + 𝜇 𝛻2𝑣̅ + 𝛻. (−𝜌𝑣̅1̅̅ ̅𝑣̅1̅̅ ̅) − 𝜌 𝑔  𝛽 (�̅� − 𝑇𝑟)                           (24) (𝜌 𝐶𝑝) 𝛻. (𝑣̅  �̅�) = 𝛻. (𝐾𝑒 𝛻 �̅�) + 𝛻. (−𝜌 𝐶𝑝 (𝑣̅1𝑇1)̅̅ ̅̅ ̅̅ ̅̅ )                                                  (25) 

Taking, {𝛻 𝑣̅ + (𝛻𝑣̅ )𝑇}2 = 𝐷𝑚̅̅ ̅̅ = mean deformation tensor                                                 (26) 
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(𝑣̅ 1. 𝑣̅ 1 )2 = 𝐾𝑒 = turbulent kinetic energy per unit mass                                     (27) 

By using the eddy-diffusivity concept, we have from equation (24), −𝜌 (𝑣̅1𝑣̅1)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜇𝑡  2𝐷𝑚̅̅ ̅̅ − 23  𝜌𝐾𝑒�̂�                                                                                   (28) 

where 𝜇𝑡 , �̂�  are the turbulent viscosity and unity tensor respectively. 

Again by using the eddy-diffusivity concept for the turbulent heat flux for equation (25), we have −𝜌 𝐶𝑝 (𝑣̅1𝑇1)̅̅ ̅̅ ̅̅ ̅̅ = 𝐶𝑝  𝜇𝑡𝜎𝑡  𝛻 𝑇 ̅                                                                                           (29) 

where 𝜎𝑡 is the turbulent Prandlt number. The transport equation for turbulent kinetic energy will be 

founded by taking the multiplication of the difference between the instantaneous and the time-

averaged momentum equations by 𝑣̅1. Again, using the time-average operator, the equation takes the 

form: 𝜌 𝛻. (𝑣̅  𝐾𝑒) = −𝜌 𝛻. {𝑣̅1 𝑃1𝜌 + 𝑢} + 𝜇𝛻2 𝐾𝑒 + 𝑃𝐾 + 𝑄𝐾 − 𝜌 𝑒1                             (30) 

where  𝑃𝐾 = −𝜌 (𝑣̅1𝑣̅1)̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                                                                        𝛻 𝑣̅ = generation rate of  𝐾𝑒 due to the mean velocity gradient      𝑄𝐾 = −𝜌 𝛽 𝑔 . (𝑣̅1𝑇1)̅̅ ̅̅ ̅̅ ̅̅                                                                                                        (31) 𝑒1 = dissipation rate of  𝐾𝑒                                                                                                             
The term 𝑄𝐾 is the buoyancy generation rate of  𝐾𝑒 .    𝑢 = 𝑣̅1. 𝑣̅12                                                                                                                          (32) 

4. Conclusions 

The paper gives a new method for the analysis of kinetic energy for the turbulent flow in the porous 

media by using the time-averaged transport equation. This might be better when studying transport 

over highly permeable media where the turbulent flow occurs in the fluid phase. The analysis gives 

opportunities for environmental and engineering flows from these derivations. 
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