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Abstract 

The flow of multiphase to porous sources is a matter of major problems with a very wide history in the field of 

fluid mechanics. This is a topic of important technological applications, most likely to find oil in petroleum 

reservoirs and more. The flow of single-phase fluid in a pore area is analyzed by Darcy's law. In the petroleum 

industry and in other applications, transportation is modeled by submitting a multiphase generalization of 

Darcy's law. In this relationship, the different pressures are defined across all different holding phases, referred 

to as capillary pressure and determined by micro pore geometry, friction between the surface and the surface 

dense chemical surface. With flow rates, the relative access is defined which corresponds to the flow rate of the 

entire liquid and its pressure gradient. In the present paper, there is the discovery and analysis of the 

distribution equation in radial coordinates for the flow of fluid in pore rocks and some useful results have been 

established. Permeability is the activity of a type of rock that varies in temperature, pressure, etc., and is 

independent of the liquid. The effect of liquid on the flow rate is calculated by viscosity. The number of 

entrances to a given stone varies with the size of the holes in the rock and the degree of connection of the empty 

space. Pressure pulses satisfy the distribution rate instead of the number of waves. Then they move at a slower 

pace than they do at a steady pace. The results shown in the paper are very useful in the science of the world, in 

the petroleum industry and so on. 
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 1. Introduction 

The concept of a hollow media within a multi-scale framework is an idea that takes advantage of a mature 

perception mode that operates on a low-level scale as a means of interpreting large scale scaling systems. 

Several body systems can be linked to a series of height measurements; everyone is associated with a certain 

mathematical formula that describes behavior on that scale. The functions of the multi-scale framework provide 

links between these various definitions that provide mathematical sequence. 

If those are used in microscopic media the method can be used to combine large thermo dynamical forms with 

the savings figures of those operating on a small scale, otherwise known as a small scale. This is useful when 

macroscopic closure relationships are incomplete or unreliable; microscopic closure relationships are better 

known. Microscopic analysis can be used to provide information on macroscopic behavior, judges facilitating 

thoughts and building appropriate macroscopic relationships. This analysis relies heavily on computational 

methods to provide real-world solutions for microscopic analysis of porous medium flow. Computer analysis 

provides opportunities to incorporate larger and more realistic interpretations of small analytical behavior into 

larger model analysis. 

 With the flow of porous media, Darcy's equation has been used. Darcy's calculation is usually based on the 

principle of linear regression between gradient pressure and speed in perforated media. The line element is 

expressed as porosity and represents the flow resistance in solid media. The flow process in pore media is 

governed by a variety of visual factors such as viscous forces and other forces arising from the spatial pressures 

between liquids and solids and spatial inconsistencies between different phases of liquids. The flow process is 

involved in the model using the pressure equation, but it takes further simulated analysis to solve the pressure 

figure instead of Darcy's calculation. For this reason Darcy's equation is widely used to mimic the flow of fluid 

through pore media. 

2. Governing Laws and Equations 

The basic law for controlling the flow of fluid through the hollow media was a law by Darcy given to Henry 

Darcy in 1856 on the testing of vertical water filtration using sand beds. Extensive distribution-related research 

was conducted by R. W Zimmerman in 2002 [14]. Darcy gave the equation as follows: 
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𝑄 = 𝐶 𝐴 Δ(𝑃 −  ρ𝑔𝑧)𝐿                                                                                                                                                    (1) 

  

Where 

 P = pressure [Pa] 

ρ = density [kg/m
3
] 

g = gravitational acceleration [m/s
2
] 

z = vertical coordinate (measured downwards) [m] 

L = length of sample [m] 

Q = volumetric flow rate [m
3
/s] 

C = constant of proportionality [m
2
/Pa s] 

A = cross-sectional area of sample [m
2
] 

A consistent set of units was used in Darcy's law as units of SI, C.G.S. units etc. In the oil industry the “local 

area units” are often used, which are not compatible. Darcy's law is similar to other mathematical laws in a 

series of mathematical terms, such as Ohm's law of electricity, Fick's law of solute diffusion and Fourier's law of 

driving heat. By the rules of fluid mechanics we know that Bernoulli's equation is as follows: 𝑃𝜌 − 𝑔 𝑧 + 𝑉2 2 = 1𝜌 (𝑃 − 𝜌 𝑔 𝑧 + 𝜌 𝑣22 )                                                                                                                   (2) 

where P / ρ is related to the enthalpy by the unit of weight, g z is the gravitational force per unit of weight, v2 / 2 
is the kinetic force per unit of weight. But the fluid speed in the pond is low so the third time will not be visible. 

We also see that the word (P – g z) represents the name of a kind of power. So it seems logical that the liquid 

could flow from high power regions to reduce the force so the driving force of the flow should be a gradient of 

(P - zg z). But because of Darcy's theory, it has been found that all components are equal, Q differs in contrast to 

the viscosity of the liquid. It is now advisable to specify the word μ, and then set C = k / μ, where k is known as 
accessibility. By taking the volume flow of each area of the unit, i. e., q = Q / A. Darcy's law can therefore be 

expressed as follows: 𝑞 = 𝑄𝐴 = 𝑘𝜇 Δ(𝑃 −  ρ𝑔𝑧)𝐿                                                                                                                                          (3) 

Where flux q has the dimensions of [m/s]. It is now easier to say of the units as [m
3
/m

2
s]. 

For the transient processes in which flux varies from point to point, we can show a differential form of the 

Darcy’s law. In vertical direction, this equation can be shown as: 𝑞𝑣  = 𝑄𝐴 = − 𝑘𝜇  𝑑(𝑃 –  ρ𝑔𝑧)𝑑𝑧                                                                                                                                     (4) 

Where suffix v is using for vertical flow. The negative sign is taken due to the fluid flows in direction from 

higher potential to lower potential. The differential form of the Darcy’s law for one dimensional horizontal flow 

will be 𝑞ℎ  = 𝑄𝐴 = − 𝑘𝜇  𝑑(𝑃 –  ρ𝑔𝑧)𝑑𝑥 = − 𝑘𝜇  𝑑𝑃𝑑𝑧                                                                                                                 (5) 

When the suffix v is taken a direct flow. In many cases the ability to enter kh in a horizontal plane is different 

from direct entry, kv; in these cases, kh> kv. The permeabilities in the two orthogonal directions within the 

horizontal plane have some differences. Then in that lesson we will take it in general: kh = kv. Permeability is a 

specific function of a rock type and varies according to temperature, pressure, etc., but is independent of the 

liquid; the effect of fluid due to the flow rate is calculated by the term viscosity in the above figures. 

Permeability has m
2
 units, but in mathematical sense it is often used as "Darcy" units, defined as: 

1Darcy = 0.987 ×10
-12

 m
2
 ≈ 10-12

 m
2
 

The Darcy unit is defined in such a way that a rock having the permeability of 1 Darcy would transmit 1 c.c. of 

the water with viscosity 1 cP per second, through the region of 1 sq. cm. cross-sectional area, if pressure drop 

along the direction of flow were 1 atm per cm. Many soils and sands that analyzers must deal with have 

permeabilities on the order of a few Darcies. The main purpose of the “Darcy” definition was to avoid the need 
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for using small prefixes like 10
-12

 etc. But a Darcy is like a round number in SI units, so conversion between the 

two is very easy. The numerical value of k for the given rock depends on size of pores in the rock, d on the 

degree of interconnectivity of the void space. So that 

k ≈  d 
2
 /1000 

where d is the diameter of the pores. The permeabilities of various types of soils and rocks vary over many 

orders of magnitude. Then the permeabilities of petroleum reservoir rocks lie in the range of 0.001-1.0 Darcies. 

So it is suitable to refer the permeability of the reservoir rocks in the units of “milliDarcies” (mD) that equal 

0.001 Darcies. In many reservoirs, the permeability is mainly due to an interconnected network of the fractures. 

The permeabilities of the fractured rocks lie in the range 1 mD to 10 Darcies. In the fractured reservoir, the 

reservoir scale permeability is not much related to core scale permeability, so that anyone can measure it. 

If the fluid is in the static equilibrium then we have q = 0, hence the differential equation can be written as: 

  𝑑(𝑃 –  ρ𝑔𝑧)𝑑𝑥 = 0 ⇒  𝑃 −  𝜌𝑔𝑧 =  constant                                                                                                     (6) 

If we put z = 0 i.e., at sea level, where fluid pressure is equal to atmospheric pressure, then we can write 𝑃𝑠 = 𝑃𝑎 + 𝜌 𝑔 𝑧                                                                                                                                                        (7) 

where 𝑃𝑠 , 𝑃𝑎 show the static pressure and atmospheric pressure respectively. But we always observe the pressure 

above the atmospheric pressure, so we can neglect the atmospheric pressure 𝑃𝑎 in above equation (7). We can 

found by comparing equation (7) with equation (4) that only pressure above and beyond the static pressure given 

by equation (2) plays an important role in the derivation of flow. So the term ρgz is not of any use, as it only 

contributes to the static pressure and but does not play a role to driving force for flow. Then after neglecting the 

said term, the equation for correct pressure can be written as: 𝑃𝑐 = 𝑃 − 𝜌𝑔𝑧                                                                                                                                                          (8) 

So the Darcy’s law in terms of corrected pressure for the horizontal flow can be written as: 𝑞 = 𝑄𝐴 = − 𝑘𝜇  𝑑𝑃𝑐 𝑑𝑥                                                                                                                                                   (9) 

 

Instead by using sea level i.e., z = 0, we can also take z=z0 as a datum i.e., the amounts of initial oil in place lie 

above and below z=zo. So we have 

Pc = P – ρ g (z − zo)                                                                                                                                          (10) 

Choosing a data rate is not easy; means that it provides a constant time for adjusted pressure so as not to 

contribute to the pressure drop. The pressure Pc described in arithmetic (10) can be interpreted as the pressure of 

the analytical fluid at z=zo depth which will be in equilibrium and fluid and present at the actual pressure at z-

depth. Darcy's law should be a macroscopic law aimed at targeting regions larger than the size of a single hole. 

Now we can talk about entry into the water storage area, we will not be referring to the entrance to the limited 

area of the figures as the given point can be a grain of sand and not a hole. Entry is now defined as a hole, not a 

single hole. Accessibility is therefore an asset in the definition of area measurement in an area around a point (x, 

y, z). Now the region should be large enough to cover a large number of pores. The P pressure applied in 

Darcy's law is primarily the central pressure taken from a small area of space. 

Darcy's law does not provide sufficient information for time-based calculations i.e., temporary problems 

involving groundwater flow. So in order to get a complete statistical rule that applies to these types of problems, 

we can first get a statistical expression for the bulk conservation goal. Bulk savings statistics mean the balance 

between weight change rate and restricted volume and weight entry in the boundary area. In the main form we 

can write the following: 𝜕𝜕𝑡 ∭ 𝜌 𝜙 𝑑𝑉 + ∬ 𝜌 �̅�. �̅� 𝑑𝑆 = ∭ 𝑞 𝑑𝑉                                                                                                    (11) 

In the above equation the double and triple integrals are taken over the surface and the volume respectively and �̅�,  �̅�, 𝜌, 𝑞 and ϕ represent the velocity vector, unit normal vector, fluid density, external mass flow rate and 

porosity respectively. The right hand side term of equation (11) can be changed into the volume integral form by 

using the Gauss’ divergence theorem as: 
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∬ 𝜌 �̅�. �̅� 𝑑𝑆 = ∭ 𝛻. (𝜌 �̅�)  𝑑𝑉                                                                                                                         (12) 

So for a fixed control volume, the integral form of conservation law can be ∭ [𝜕(𝜌 𝜙)𝜕𝑡 + 𝛻. (𝜌 �̅�) − 𝑞 ]  𝑑𝑉                                                                                                                      (13) 

Now the differential form of the mass conservation equation can be written in the coordinate invariant form as: 𝜕(𝜌 𝜙)𝜕𝑡 + 𝛻. (𝜌 �̅�) = 𝑞                                                                                                                                      (14) 

For the multiphase phase flow, it is necessary to account for saturation of each phase. So that the equation (14) 

within the every phase α can be written as: 𝜕(𝜌𝛼 𝑆𝛼𝜙)𝜕𝑡 + 𝛻. (𝜌𝛼 �̅�𝛼) = 𝑞𝛼                                                                                                                       (15) 

3. Diffusion Equation in Radial Coordnates 

The transient flow of fluid in a pore space is controlled by a type of differential component known as the 

diffusion equation. Detailed discovery and distribution-related discussion was provided by R. W. Zimmerman in 

2002 [14] that is, discussed in this paper as follows. So in order to get the figure, we combine Darcy's law with 

the law of mass conservation and the figure that describes the process by which the liquid is stored inside a 

perforated stone. Now we use the product function division (ρ ϕ), we find                     𝐷(𝜌 𝜙) = 𝜌 𝐷𝜙 + 𝜙 𝐷𝜌, 𝐷 ≡ 𝑑𝑑𝑡                                                                                            (16) 

= 𝜌 𝑑𝜙𝑑𝑃 𝑑𝑃𝑑𝑡 + 𝜙 𝑑𝜌𝑑𝑃 𝑑𝑃𝑑𝑡  

                   = 𝜙 [(1𝜙 𝑑𝜙𝑑𝑃) 𝑑𝑃𝑑𝑡 + 𝜌 (1𝜌 𝑑𝜌𝑑𝑃) 𝑑𝑃𝑑𝑡 ]          𝐷(𝜌 𝜙)  = 𝜌 𝜙 (𝑐𝑅 + 𝑐𝑓) 𝐷(𝑃)                                                                                                          (17) 

where 𝑐𝑅 , 𝑐𝑓 are the compressibility of the rock and the fluid respectively. 

The equation for mass conservation for the fluid flow is taken as: − 𝑑(𝜌 𝑞)𝑑𝑥 = 𝑑(𝜌 𝜙)𝑑𝑡                                                                                                                                      (18) 

By using the Darcy’s law, we have          − 𝑑(𝜌 𝑞)𝑑𝑥 = − 𝑑𝑑𝑥 [ – 𝜌𝑘𝜇 𝑑𝑃𝑑𝑥] 

        − 𝑑(𝜌 𝑞)𝑑𝑥 = 𝑘𝜇 [𝜌 𝑑2 𝑃𝑑𝑥2 + 𝑑𝜌𝑑𝑥 𝑑𝑃𝑑𝑥] 

        − 𝑑(𝜌 𝑞)𝑑𝑥 = 𝑘𝜇 [𝜌 𝑑2 𝑃𝑑𝑥2 + 𝑑𝜌𝑑𝑃 𝑑𝑃𝑑𝑥 𝑑𝑃𝑑𝑥] 

        − 𝑑(𝜌 𝑞)𝑑𝑥 = 𝑘𝜌𝜇 [𝑑2 𝑃𝑑𝑥2 + 1𝜌 𝑑𝜌𝑑𝑃 (𝑑𝑃𝑑𝑥)2] 

         − 𝑑(𝜌 𝑞)𝑑𝑥 = 𝑘𝜌𝜇 [𝑑2 𝑃𝑑𝑥2 + 𝑐𝑓 (𝑑𝑃𝑑𝑥)2]                                                                                                                  (19) 

From the equations (17) and (19), we get 𝑑2 𝑃𝑑𝑥2 + 𝑐𝑓 (𝑑𝑃𝑑𝑥)2 = 1𝐾 𝜌 𝜙 (𝑐𝑅 + 𝑐𝑓) 𝐷(𝑃)                                                                                                              (20)   
But we know that, 
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𝑑2 𝑃𝑑𝑥2 ≫ 𝑐𝑓 (𝑑𝑃𝑑𝑥)2
 

On neglecting the term 𝑐𝑓 (𝑑𝑃𝑑𝑥)2  , 𝑖. 𝑒.  
𝑐𝑓 (𝑑𝑃𝑑𝑥)2 ≈ 𝑐𝑓 [ 𝜇 𝑄2 𝜋 𝑘 𝐻 𝑅]2                                                                                                                       (21) 𝑑2 𝑃𝑑𝑥2 ≈ 𝜇 𝑄2 𝜋 𝑘 𝐻 𝑅2                                                                                                                                        (22) 

So we can neglect the nonlinear term in equation (20), we get the diffusion equation as given 𝑑𝑃𝑑𝑡 = 𝐾𝜙 𝜇 (𝑐𝜙 + 𝑐𝑓) 𝑑2𝑃𝑑𝑥2                                                                                                                            (23) 

where (𝑐𝜙 + 𝑐𝑓) = 𝑐 is the total compressibility. 

The parameter which governs the rate at which fluid pressure diffuses through the rock is the hydraulic 

diffusivity DH , that is defined by 𝐷𝐻 = 𝑘𝜙 𝜇 (𝑐𝜙 + 𝑐𝑓)                                                                                                                                (24) 

The distance d at which a pressure disturbance will travel during an elapsed time t is given as 𝑑 = √4 𝐷𝐻𝑡                                                                                                                                             (25) 

For the multi-phase flow if we have assume that the pores of the rock are filled with two components, oil and 

water, and often also contain some hydrocarbons in the gaseous phase. So we have to find the governing flow 

equations for an oil and water system, in the general form. From the rock properties module that Darcy’s law 

can be generalized for two-phase flow by including a relative permeability factor for each phase, we have 𝑞𝑤 = −𝑘𝑘𝑟𝑤𝜇𝑤 𝑑𝑃𝑤𝑑𝑥                                                                                                                                   (26) 

𝑞𝑜 = −𝑘𝑘𝑟𝑜𝜇𝑜 𝑑𝑃𝑜𝑑𝑥                                                                                                                                     (27) 

where the subscripts w and o are used for oil and water respectively. The two relative permeability functions are 

supposed to be known functions of the phase saturations. For the oil-water system, the two saturations are 

necessarily related to each other by the relationship 𝑆𝑤 + 𝑆𝑜 = 1                                                                                                                                          (28) 

The pressures in the two phases at every point in the reservoir must be different. If the reservoir is oil-wet then 

the two pressures will be given by 𝑃𝑜 − 𝑃𝑤 = 𝑃𝑐  𝑆𝑜                                                                                                                                   (29) 

where the capillary pressure 𝑃𝑐  is given by the rock-dependent function of oil saturation. 

But the volume of the oil in a given region is equal to the total pore volume multiplied by the oil saturation then 

by the equations of the conservation of mass for the two phases can be written by inserting a saturation factor in 

the storage term as given − 𝑑(𝜌0𝑞0)𝑑𝑥 = 𝑑(𝜙𝜌0𝑆0)𝑑𝑡                                                                                                                 (30) 

− 𝑑(𝜌𝑤𝑤)𝑑𝑥 = 𝑑(𝜙𝜌𝑤𝑆𝑤) 𝑑𝑡                                                                                                              (31) 

The densities of the two phases are related to their respective phase pressures with the equation of state as given 

by 𝜌0 = 𝜌0(𝑃0)                                                                                                                                     (32) 𝜌𝑤 = 𝜌𝑤(𝑃𝑤)                                                                                                                                   (33) 
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where the temperature are taken as constant.  

Lastly, the porosity must be the function of the phase pressures Po and Pw. The above two pressures 

independently affect the porosity. Now, the capillary pressure 𝑃𝑐  is generally small so that 𝑃𝑜 ≈  𝑃𝑤 

From which we can use the pressure-porosity relationship that would be obtained under single-phase conditions, 

i.e., 𝜙 =  𝜙 (𝑃0)                                                                                                                                     (34) 

If the fluid is taken as slightly compressible or if the pressure variations are small then the equations of state are 

written as 𝜌(𝑃𝑜) =  𝜌0𝑖[1 +  𝑐𝑜  (𝑃𝑜  –  𝑃𝑜𝑖  )]                                                                                              (35) 

where the subscript “i” is used for the initial state, and the compressibility co is taken as a constant. 

In the field of engineering there is much interest in the case of fluid flow towards a well, in which case it is more 

convenient to use the cylindrical (radial) coordinates in the place of Cartesian coordinates. To derive the 

diffusion equation in radial coordinates, it is considered that the fluid flowing radially towards (or away from) a 

vertical well, in the radially symmetric manner. Now replace x with R, and taking A(R) = 2 πRH:                                              

                                                                     R 

 

                                                   ΔR                                          q(R+δR)     

 

                                                                                              H          

 

 

 

Fig.1 (A region used in deriving the diffusion equation in radial coordinates) 

[2 πRH ρ(R) q(R) − 2 π(R + δR) H ρ(R + δR) q(R + δR)] δt = m(t + δt) −m(t)                     (36) 

Now dividing the above equation by δt, and taking limit as δt → 0, we have 

2 πH [R ρ(R) q(R) − (R+ δR) ρ(R+ δR) q(R+ δR)] = dm/dt                                                 (37) 

On the right-hand side: 𝑀 =  ρφ𝑉 =  ρφ2 π𝐻𝑅 𝛿𝑅                                                                                                             (38) 𝐷𝑚𝑑𝑡  = 𝑑( ρφ2 π𝐻𝑅 𝛿𝑅)𝑑𝑡  𝐷𝑚𝑑𝑡 = 2 π𝐻𝑅 𝑑( ρφ)𝑑𝑡   𝛿𝑅  
                                                                                                                                             (39) 

Equate eqs. (37) and (39), divide by δR, and taking δR → 0, we have 

  − 𝑑( ρ𝑞𝑅)𝑑𝑅  = 𝑅𝑑( ρφ)𝑑𝑡      
                                                                                                                                                             (40) 

Eq. (40) is the radial flow version of the continuity (i.e., conservation of mass) equation. Now use the Darcy’s 

law we have 𝐾
μ

 𝑑𝑑𝑅   (𝜌 𝑅 𝑑𝑃𝑑𝑅) = ρφ(𝑐𝑓  +  𝑐φ )𝑅 𝑑𝑃𝑑𝑡                                                                                      (41) 

Follow the same procedure, we have 
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1R 𝑑𝑑𝑅  ( 𝑅 𝑑𝑃𝑑𝑅) + 𝑐𝑓  (𝑑𝑃𝑑𝑅)2 = 𝜑𝜇(𝑐𝑓  +  𝑐φ )𝑘 𝑑𝑃𝑑𝑡                              
                                                                                                                                           (42) 

For the liquids, we again neglect the term cf (dP / dR)
2
, to arrive at 𝑑𝑃𝑑𝑡 = 𝑘𝜑𝜇𝑐𝑡 1𝑅 𝑑𝑑𝑅 ( 𝑅 𝑑𝑃𝑑𝑅) 

                                                                                                                                          (43) 

Eq. (43) is the governing equation for transient, radial flow of a liquid through porous rock.  

4. Conclusions 

The permeability is a function of rock type that varies with stress, temperature etc., and does not depend on the 

fluid. The effect of the fluid on the flow rate is accounted for by the term of viscosity. The numerical value of k 

for a given rock depends on the diameter of the pores in the rock “d” as well as on the degree of 

interconnectivity of the void space. The parameter that governs the rate at which fluid pressure diffuses through 

a rock mass is the hydraulic diffusivity which is defined by  𝐷𝐻 = 𝑘𝜙 𝜇 𝑐   
 The distance d at which a pressure disturbance will travel during an elapsed time t is given as  𝑑 = √4 𝐷𝐻𝑡 

 The time required for a pressure disturbance to travel a distance d is found by 𝑡 = 𝜙 𝜇 𝑐 𝑑24𝑘  

The pressure pulses obey a diffusion equation not a wave equation. So, they travel at a speed that continually 

decreases with time rather than travelling at a constant speed. 
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