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Abstract 

The macroscopic transport analysis for the incompressible fluid flow within the 

porous media supported the volume-average technique for the heat transfer was given within the 

numerous researches. Within the present paper there is the analysis and derivations of equations 

supported the construct of time-average. This offers a latest new ideas and technique for the analysis 

of flow in porous media. The time-averaged transport equations play a vital role on analyzing the 

transportation over the extremely semi permeable media wherever the flow happens within the fluid 

flow.  
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1. Introduction 

The idea of macroscopic transportation for the incompressible fluid flow within the porous media was 

employed by Vafai & Tien (Vafai et al. 1981) in 1981 and Whitaker in 1999 (Whitaker, 1999), 

supported the volume-average methodology for the heat transfer by Hsu & Cheng (Hsu eta. 1990) in 

1990. The idea of space average in porous media is predicated on the idea that though fluid velocities 

and pressure could also be irregular at the pore scale, regionally space-averaged measurements of 

those quantities vary swimmingly. The macroscopic equations are normally derived by spatially 

averaging the microscopic ones over a Representative Elementary Volume (REV) of the porous 

media. A REV ought to be the tiniest differential volume, which ends up in the useful average 

properties. It implies that the length scale of this volume should be sufficiently larger than the pore 

scale (Whitaker, 1999). Also, the size of the system should be significantly larger than the REV’s 

length scale for avoiding the non-homogeneities i.e. 

 𝑝 ≪ 𝐷 ≪ 𝐿 

Where p is the pore scale or the microscopic length scale, D is the macroscopic length scale and L is 

the mega scale or scale of the system as shown by figure-1. 

 

 

Figure-1. Identification of different length scales. 
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A schematic illustration of a spherical REV consisting of a hard and fast solid section saturated with a 

nonstop fluid section and is shown by the figure-2, here the solid section is mounted, i.e., the solid 

section doesn't amendment every which way if totally different ensembles are thought-about. The 

degree of the REV is constant i.e., not dependent of the area and it is equal to the addition of the fluid 

and solid volumes within the REV, i.e. 𝑉 = 𝑉𝑠 + 𝑉𝑓 

 

Figure 2. Spherical Representative Elementary Volume (REV). 

The spherical representative elementary volume is shown by figure-2.On taking the time fluctuations 

of the flow properties with spatial deviations, there are generally two methods for deriving and 

studying the macroscopic equations. The first method based on the time-average operator followed by 

the volume-averaging initially used by Kuwahara (Kuwahara et al. 1998) in 1998. The second method 

based on the concept of volume-averaging before time averaging  that was used by Lee & Howell in 

1987, and the macroscopic transport equations established by these two methods are equivalent 

(Pedras et al. 1999). This initial method for the flow variables has been extended to the non buoyant 

heat transfer for the porous media by considering the phenomenon of time variations and spatial 

deviations was taken by Rocamora & Lemos (Rocamora et al. 2000) in 2000.Later, the researches on 

the natural convection flow on the porous layer, double-diffusive convection for the turbulent flow 

and heat transfer in the porous media was given by de Lemos (de Lemos et al. 2004) in 2004. The 

numerical based analysis for applications of double-decomposition theory to buoyant flow was also 

reviewed by de Lemos in 2003(de Lemos et al. 2003). 

The spherical representative elementary volume is shown by figure-2.On taking the time fluctuations 

of the flow properties with spatial deviations, there are usually two strategies for etymologizing and 

finding out the macroscopic equations. The primary methodology supported the time-average operator 

followed by the volume-averaging ab initio utilized by Kuwahara (Kuwahara et al. 1998) in 1998. The 

second methodology supported the idea of volume-averaging before time averaging that was utilized 

by Lee & Howell in 1987, and therefore the macroscopic transport equations established by these two 

strategies are equivalent (Pedras et al. 1999). This primary methodology for the flow variables has 

been extended to the non buoyant heat transfer for the porous media by considering the development 

of your time variations and spatial deviations was taken by Rocamora & Lemos (Rocamora et al. 

2000) in 2000. Later, the researches on the natural convection flow on the porous layer, double-

diffusive convection for the flow and heat transfer within the porous media was given by DE Lemos 

et al. in 2004. The numerical primarily based analysis for applications of double-decomposition 

theory to buoyant flow was additionally reviewed by DE Lemos in 2003(de Lemos et al. 2003, 04). 
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2. Governing Equations 

The macroscopic instantaneous transfer equations for incompressible fluid flow having the constant 

properties are given as: ∇. �̅� = 0                                                                                                                                         (2.1) 𝜌 ∇. (�̅�. �̅�) = −∇𝑃 + 𝜇∇2�̅� + 𝜌 �̅�                                                                                            (2.2) ( 𝜌 𝐶𝑃) ∇. (�̅� 𝑇) = ∇. (λ ∇ 𝑇)                                                                                                    (2.3) 

Where 𝑣 ̅is the velocity vector, P is the pressure, μ is the viscosity of the fluid, ρ is the density of the 

fluid, �̅�  is the acceleration vector due to gravity, 𝐶𝑃  is the specific heat, T is the temperature and λ is 
the thermal conductivity of the fluid. The mass fraction distribution related to chemical species e is 

governed by the transport equation given as:   𝛻. (𝜌 �̅� 𝑚𝑒 + 𝐽�̅�) = 𝜌 𝑅𝑒                                                                                                            (2.4) 

Where me is the mass fraction of component e, �̅� is the mass-averaged velocity of the fluid mixture, so 

we have  �̅� = ∑ 𝑚𝑒 𝑒 �̅�𝑒                                                                                                                            (2.5) 

Where �̅�𝑒 is the velocity of species e. The mass diffusion flux  𝐽�̅�  is due to velocity slip of the species 

e and is given as: 𝐽�̅� = 𝜌𝑒 (�̅�𝑒 −  �̅�) = −𝜌 𝐷𝑒 𝛻 𝑚𝑒                                                                                             (2.6) 

Here  𝐷𝑒 is the diffusion coefficient of species e for the mixture. The equation (2.6) is also known as 

the Fick’s law. The Re represents the generation rate of species per unit mass. 

If the density ρ varies with the temperature T for the natural convection flow, the remaining density 

based on the Boussinesq concept will be given as: 𝜌𝑇 ≅ 𝜌 [1 − 𝛽(𝑇 − 𝑇𝑟)]                                                                                                            (2.7) 

Here Tr is the temperature at reference value and β is the thermal expansion coefficient and is defined 

as: 𝛽 = − 1𝜌 (𝜕𝜌𝜕𝑇)𝑃                                                                                                                           (2.8) 

By using the equation (2.2) and (2.7), we get 𝜌 𝛻. (�̅� �̅�) = −(𝛻 𝑃)∗ + 𝜇 𝛻2 �̅� − 𝜌 �̅�𝛽 (𝑇 − 𝑇𝑟 )                                                             (2.9) 

Here (𝛻 𝑃)∗ = 𝛻 𝑃 − 𝜌 �̅�, represents the modified pressure gradient. 

From equation (2.3), we have the equation for fluid as: (𝜌 𝐶𝑝)𝐹 𝛻. (�̅� 𝑇𝐹) = 𝛻. (𝜆𝐹 𝛻 𝑇𝐹) + 𝑆𝐹                                                                                 (2.10) 

Also from equation (2.3), we have the equation for solid or porous matrix as: 𝛻. (𝜆𝑝 𝛻 𝑇𝑝) + 𝑆𝑝 = 0                                                                                                            (2.11) 

Here the suffix F and p are used for fluid and porous matrix respectively. The factor 𝑆𝐹 or 𝑆𝑝 vanishes 

in the absence of heat generation. The volume-averaging in the porous medium was given by Slattery 

in 1967, Whitaker in 1999 (Slattery et al. 1967), (Whitaker, 1999) and Gray et al. in 1977 (Gray et al. 
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1977). It makes the concept of REV (representative elementary volume) and by using the concept, the 

equations are integrated. 

2.1 Volume and Time Average Operators 

The volume average of the general property term φ over REV for the porous medium was given by 

Gray (Gray et al. 1977) in 1977 and is written as: [𝜑]𝑉 =  1𝛿𝑉  ∫ 𝜑  𝑑𝑉                                                                                                               (2.12) 

Here [𝜑]𝑉 is taken for any point surrounded by REV of size 𝛿𝑉. The average is given as:  [𝜑𝐹]𝑉 = 𝜙 [𝜑𝐹]𝑖                                                                                                                 (2.13) 

Here the suffix ‘i’ is used for the intrinsic average and ϕ is the porosity of the medium and is defined 

as: 𝜙 = 𝛿𝑉𝐹𝛿𝑉                                                                                                                                            𝜑 = [𝜑]𝑖 + 𝜑𝑖                                                                                                                        (2.14) 

in addition to the condition that [𝜑𝑖]𝑖 = 0                                                                                                                               (2.15) 

Here 𝜑𝑖 is the spatial deviation of 𝜑 for the intrinsic average 𝜑𝑖. To derive the flow equations, we 

have to know the relation between the volume average of derivatives and derivatives of volume 

average. The relation between these two was presented by Slattery & Gray (Gray et al. 1977) in 1977. 

So we have [𝛻𝜑]𝑉 = 𝛻{𝜙(𝜑)𝑖} +  1𝛿𝑉   [∫ �̂� 𝜑 𝑑𝑠]𝛼𝑖                                                                      (2.16) 

[𝛻. 𝜑]𝑉 = 𝛻. {𝜙(𝜑)𝑖} + 1𝛿𝑉   [∫ �̂� . 𝜑 𝑑𝑠]𝛼𝑖                                                                  (2.17) 

[𝜕𝜑𝜕𝑡 ]𝑉 = 𝜕𝜕𝑡 {𝜙(𝜑)𝑖} −  1𝛿𝑉   [∫ �̂� . (𝑣 ̅𝑖 𝜑) 𝑑𝑠]𝛼𝑖                                                            (2.18) 

Here αi,  �̅�𝑖 and �̂� are interfacial area, velocity and unit vector normal to αi respectively. If the porous 

substrate is fixed then �̅�𝑖 = 0. But if the medium is rigid and heterogeneous then 𝛿𝑉𝐹 depends on the 

space and doesn’t depend on time as taken by Gray et al. [3]. The time average of  𝜑 is given as: �̅� =  1𝛿𝑡  ∫ 𝜑 𝑑𝑡                                                                                                            (2.19)𝑡+𝛿𝑡
𝑡  

Here 𝛿𝑡 is very small time interval as compared to �̅� but sufficient to calculate the turbulent 

fluctuations of 𝜑. Now the time decomposition will be taken as: 𝜑 = �̅� +  𝜑′                                                                                                                            (2.20) 

with the condition that 𝜑 ′̅ = 0                                                                                                                                      (2.21) 

Here 𝜑′ is the time fluctuation of 𝜑 with respect to �̅�. 
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3. Time-Averaged Transport Equation 

Let us consider the following: 𝑣 = �̅� +  𝑣1, 𝑇 = �̅� + 𝑇1, 𝑃 = �̅� +  𝑃1                                                                         (3.1) 

The equations (2.1), (2.2) and (2.9) will be 𝛻. �̅� = 0                                                                                                                               (3.2) 𝜌𝛻. (�̅� �̅�) = −(𝛻�̅�)∗ + 𝜇 𝛻2�̅� + 𝛻. (−𝜌𝑣1̅̅ ̅𝑣1̅̅ ̅) − 𝜌 �̅� 𝛽 (�̅� − 𝑇𝑟)                          (3.3) (𝜌 𝐶𝑝) 𝛻. (�̅� �̅�) = 𝛻. (𝐾𝑒 𝛻 �̅�) + 𝛻. (−𝜌 𝐶𝑝 (𝑣1𝑇1)̅̅ ̅̅ ̅̅ ̅̅ )                                                (3.4) 

Taking, {𝛻 �̅� + (𝛻�̅�)𝑇}2 = 𝐷𝑚̅̅ ̅̅ = mean deformation tensor                                                  (3.5) (�̅�1. �̅�1 )2 = 𝐾𝑒 = turbulent kinetic energy per unit mass                                      (3.6) 

Now from the eddy-diffusivity concept, we have  −𝜌 (𝑣1𝑣1)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜇𝑡  2𝐷𝑚̅̅ ̅̅ − 23  𝜌𝐾𝑒�̂�                                                                                    (3.7) 

Here 𝜇𝑡 , �̂�  are the turbulent viscosity and unity tensor respectively. 

Again by using the eddy-diffusivity concept for the turbulent heat flux, we have −𝜌 𝐶𝑝 (𝑣1𝑇1)̅̅ ̅̅ ̅̅ ̅̅ = 𝐶𝑝  𝜇𝑡𝜎𝑡  𝛻 𝑇 ̅                                                                                          (3.8) 

Here 𝜎𝑡 is the turbulent Prandlt number. The transport equation for turbulent kinetic energy will be 

founded by taking the multiplication of the difference between the instantaneous and the time-

averaged momentum equations by 𝑣1. Again, using the time-average operator, the equation takes the 

form: 𝜌 𝛻. (�̅� 𝐾𝑒) = −𝜌 𝛻. {𝑣1 𝑃1𝜌 + 𝑢} + 𝜇𝛻2 𝐾𝑒 + 𝑃𝐾 + 𝑄𝐾 − 𝜌 𝑒1                           (3.9) 

Here  𝑃𝐾 = −𝜌 (𝑣1𝑣1)̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                                                                        𝛻 �̅� = generation rate of  𝐾𝑒 due to the mean velocity gradient      𝑄𝐾 = −𝜌 𝛽 �̅�. (𝑣1𝑇1)̅̅ ̅̅ ̅̅ ̅̅                                                                                                   (3.10) 𝑒1 = dissipation rate of  𝐾𝑒                                                                                                             
The term 𝑄𝐾 is the buoyancy generation rate of  𝐾𝑒 .    𝑢 = 𝑣1. 𝑣12                                                                                                                     (3.11) 

4. Conclusion 

The present paper gives some new technique for the analysis of flow within the porous media by 

victimization the time-averaged transport equation. This may well be higher once learning transport 

over extremely semi permeable media wherever the flow happens within the fluid part. The analysis 

offers opportunities for environmental and engineering flows from these derivations.  
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