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Abstract 

                    In recent years, statistical modelling techniques have gained significant traction; 

however, their application across various fields has been inadequate, often lagging behind. The field 

of drug design is no exception. This article presents the development of a statistical model based on 

an empirical dataset, specifically focusing on the exploration of the quantitative structure-activity 

relationship (QSAR) within an anticancer protein cell dataset. The study investigates the anticancer 

activity of Gossypol acetic acid against the BCL2 target, specifically for colorectal cancer, breast 

cancer, and mouth cancer. The model is developed using 80% of a virtual sample comprising 138 

data points. The regression coefficient of Multiple Linear Regression (MLR) is computed for the 

training set, utilizing the Leave-One-Out (LOO) method for cross-validation. The remaining 20% of 

the dataset serves as a test set to validate the proposed model. Five influential factors with a high 

degree of statistical efficiency have been detected. 

Keywords: QSAR, anticancer activity of Gossypol acetic acid, MLR and Leave-One-Out. 

1. Introduction 

There are an estimated 2.5 million cancer cases in India, with over 800,000 new cases and 556,400 

recorded fatalities each year. Among the recorded deaths in a study of 122,429 individuals, 7,137 

were attributed to cancer, reflecting the national estimate of 556,400 cancer-related deaths in India in 

2010. A significant portion of these deaths, around 71%, occurred in individuals aged 30-69 years, 

accounting for 200,100 men and 195,300 women. Within this age group, the three most common fatal 

cancers in men were oral cancers (including lip and pharynx) with 45,800 cases (22.9% of deaths), 

stomach cancer with 25,200 cases (12.6% of deaths), and lung cancer (including trachea and larynx) 

with 22,900 cases (11.4% of deaths). Among women aged 30-69 years, the three leading causes of 

cancer-related deaths were cervical cancer with 33,400 cases (17.1% of deaths), stomach cancer with 

27,500 cases (14.1% of deaths), and breast cancer with 19,900 cases (10.2% of deaths). 

QSAR modelling, which stands for Quantitative Structure-Activity Relationship modelling, is a 
widely utilized approach in chemistry to predict and understand the properties and activities of 
chemical compounds. By analysing the relationship between the molecular structure of a compound 
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and its activity or property, QSAR models provide valuable insights for drug discovery, toxicity 
assessment, environmental impact analysis, and other chemical-related applications. The ability to 
predict chemical properties accurately can save time, resources, and effort in the development of new 
compounds or the evaluation of existing ones. The selection of appropriate statistical methods is 
crucial in QSAR model development. Different statistical approaches, such as linear and non-linear 
methods, have distinct characteristics and assumptions. The methodology selected can have a 
considerable impact on the model's precision, robustness, and forecasting abilities. Understanding the 
strengths and limitations of  

different statistical methods allow researchers to make informed decisions in selecting the most 
suitable approach for their specific QSAR modelling goals.  

MATERIALS AND METHOD  

Regression analysis is considered to be one of the most widely used statistical techniques used for 

analysing multifactor data. Its broad appeal is a result of the conceptually simple process of using an 

equation which expresses a relationship between a set of variables. Successful regression analysis 

requires an appreciation of both the theory and pragmatic problems that often arise when the 

technique is used for the real-world data. The regression models are used for many purposes including 

data description, parameter estimation, prediction and control when a regression equation is used 

prediction purpose, it is important that the variables must be related in a casual manner. 

1.1 Multiple Linear Regression (MLR) 

In order to establish a relationship between X and y, Multiple Linear Regression (MLR) has until 

recently been the widely used method of choice. In MLR, it is assumed that X is of full rank and the 

xij are measured with negligible error. The algebraic MLR model is defined in Equation 1.1 and in 

matrix notation 

y = Xβ + e                                                              (1.1) 

where X = [x0|x1|…xJ], β’ = [β0, β1,…, βJ] and e is an error vector. Note that the first column in X, i.e., 

x0 consists of only constants which, after mean-centering, becomes zero and consequently x0 is 

omitted. When X is of full rank the least squares solution is:  �̂� = (𝑋′𝑋)−1𝑋′𝑌                                                 (1.2) 

where �̂� is the estimator for the regression coefficients in 𝛽. An obvious disadvantage using MLR as 

regression method in QSAR is: when I ≤ J  X is not of full rank and (𝑋′𝑋)−1 in Equation 2.3.1, is not 

defined and 𝛽 cannot be estimated. In this chapter we have also discussed about the problem with 

multicollinearity, i.e., the case when X not is of full rank.  

1.2 Multicollinearity 

In the previous section, the potential danger of multicollinearity in combination with MLR was 

mentioned. Multicollinearity is present when the columns of X are approximately or exactly linearly 
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dependent. In the case of exact linear dependency, (𝑋′𝑋)−1is not defined, and the estimation of the 

regression coefficients �̂� cannot be expressed as in Equation 1.1 anymore. If the linear dependency is 

approximate, assuming X is properly auto-scaled, at least one of the diagonal elements in the inverse 

covariance matrix, (𝑋′𝑋)−1, will be large. Additionally, some of the diagonal elements of cov�̂�, well-

known to be s2(𝑋′𝑋)−1 (where s2 is (𝒚–𝑿�̂� )′(𝒚–𝑿�̂� )/(𝐼– 𝐽) (𝐼 > 𝐽)), may be large, indicating 

that some 𝑏𝑠 in �̂� are estimated with low precision. Consequently, multicollinearity may influence the 

interpretation of the model and affect external predictions detrimentally. Therefore, it is important to 

be able to detect whether X is collinear or not, prior to regression analysis. The inverse covariance 

matrix, (𝑋′𝑋)−1, provides a first indication of ill conditioning (multicollinearity) among the variables 

in X. Another commonly used indication of multicollinearity is the variance inflation factor (VIF): 𝑉𝐼𝐹𝑖 = 1 1 − 𝑅𝑖2⁄                                                                                   (1.2.1) 

where 𝑅𝑖2 is the squared multiple correlation coefficient when Xi (the ith variable in X) is regressed 

on the remaining variables. When the columns of X are close to linear dependence (i.e., when the 

determinant of (𝑋′𝑋)−1 is close to zero), 𝑅𝑖2 will be close to unity and VIFi will be large. In the ideal 

case, when (𝑋′𝑋)−1 = 𝐼, i.e., when the variables in X are orthogonal, the VIF for the ith variable is 

unity. Thus, the VIF measures the increase (inflation) of the variance, for each variable, compared to 

the ideal case. A flag of warning is raised when VIF is greater than five, as suggested by Smilde. 

The condition index or number (f) is defined as: ø = 𝜆𝑚𝑎𝑥0.5𝜆𝑚𝑖𝑛0.5                                                                                            (1.2.2) 

Where 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 represent the largest and the smallest eigenvalue, respectively, of (𝑋′𝑋)−1 

(scaled and centered X). When X is ill-conditioned, at least one eigenvalue will be close to zero and, 

consequently, f becomes large. As a rule of thumb, when f exceeds 100, the effect of multicollinearity 

may be significant. The influence of multicollinearity in QSAR is well known, and disqualified MLR 

as regression method years ago. In a chemical system, controlled by variables that are easily 

manipulated, an experimental design may be a solution to avoid multicollinearity. In QSAR, however, 

the objects are generally molecules which can complicate an experimental design.  

1.3 THE n VARIABLE MODEL: NOATATION AND ASSUMPTIONS 

Generalizing the n –variable population regression function (PRF).we may write the n-variable PRF 

as 𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 ……………𝛽𝑛𝑖 + 𝜇𝑖                 (1.3.1) 
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Where Y is the dependent variable, 𝑋1,𝑋2 ……………… .𝑋𝑛 are the explanatory variables (or 

repressors), 𝜇 the stochastic disturbance term, and i the ith observation in case the data are time series 

the subscript t will denote the tth observation. In 𝐸𝑞 (2.5.1) 𝛽1 is the intercept term. Generally it gives 

the mean or average effect on Y of all the variables excluded from the model although its mechanical 

interpretation is the average value of Y when X1, X2………Xn are set equal to zero. The coefficients 

β1, β2, β3, ………..βn are called the partial regression coefficients and their meaning will be 

explained shortly. 

Researcher operated within the framework of the classical linear regression model (CLRM) 

specifically researcher assumes the following: 

Zero mean value of 𝜇𝑖 𝐸(𝜇𝑖|𝑋1, 𝑋2, …𝑋𝑛) = 0 for each 𝑖                (1.3.2) 

No serial correlation or  𝑐𝑜𝑣(𝜇𝑖, 𝜇𝑗) ∀ 𝑖 ≠ 𝑗                                       (1.3.3) 

Homoscedasticity or  𝑣𝑎𝑟(𝜇𝑖) = 𝜎2 ∀𝑖                                          (1.3.4) 

Zero covariance between 𝜇𝑖 and each X variable, or 𝑐𝑜𝑣(𝜇𝑖, 𝑋2𝑖) = 𝑐𝑜𝑣(𝜇𝑖 , 𝑋3𝑖) = ⋯ = 𝑐𝑜𝑣(𝜇𝑖 , 𝑋𝑛𝑖) = 0   (1.3.5) 

No specification bias, or the model is correctly specified. 

No multicollinearity between the X variables, or No exact linear relationship between X2, X3, 

…………..Xn . 

Informally no collinearity means of the regressors can be written as exact linear combinations of the 

remaining regressors in the model. Formally no collinearity means that here exists no set of numbers 

λ1, λ2, ………….λn not both zero such that  𝜆2𝑋2𝑖 + 𝜆3𝑋3𝑖 ………𝜆𝑛𝑋𝑛𝑖 = 0                              (1.3.6) 

If such an exact linear relationship exists then X2, X3,…………..Xn are said to be collinear or linearly 

dependent .On the other hand. If true only when 𝜆2 = 𝜆3 = 0 then𝑋2 and 𝑋3 are said to be linearly 

independent. 

Thus if  𝑋2𝑖 = −4𝑋3𝑖𝑜𝑟 𝑋2𝑖 = 4𝑋3𝑖 = 0                                (1.3.7) 

http://ijopaar.com/


http://ijopaar.com; 2018 Vol. 1(1); pp. 110-121, ISSN: 2455-474X   

 

UGC JOURNAL NO. 45204; 

https://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NDUyMDQ=   

IMPACT FACTOR: 4.977   Page | 114  

 

The n variables are linearly dependent and provided both are included in a regression model we will 

have perfect collinearity or an exact linear relationship between the n regressors. 

First the assumption of no multicollinearity pertains to our theoretical (𝑖. 𝑒, PRF) model. In practice 

when we collect data for empirical analysis there is no guarantee that there will not be correlations 

among the regressors.  As a matter of fact, in most applied work it is nearly impossible to find out two 

or more variables that may not be correlated to some extent.  

Second, we are talking only about perfect linear relationships between two or more variables. 

Multicollinearity rule out nonlinear relationship between variables Suppose𝑋3𝑖 = 𝑋22. This dose not 

violate the assumption of no perfect collinearity as the relationship between the variables here is 

nonlinear. 

1.4 OLS ESTIMATION OF THE REGRESSION COEFFICIENTS: 

To obtain the OLS estimate of β, let us write k variable simple regression: 𝑌𝑖 = �̂�1 + �̂�2𝑋2𝑖 + �̂�3𝑋3𝑖 …………………… �̂�𝑘𝑋𝑘𝑖 + �̂�                  (1.4.1) 

This can be written more compactly in matrix notation as                                       𝑦 = 𝑋�̂� + �̂�                                                   (1.4.2) 

and in matrix form as 

[𝑦1𝑦2⋮𝑦𝑛] = [1 𝑋21 𝑋31 ⋯ 𝑋𝑘11 𝑋22 𝑋32 … 𝑋𝑘2⋮ ⋮ ⋮ ⋮ ⋮1 𝑋2𝑛 𝑋3𝑛 ⋯ 𝑋𝑘𝑛] [  
 �̂�1�̂�2⋮�̂�𝑘]  

 + [�̂�1�̂�2⋮�̂�𝑛] 

 

Where �̂� is a k-ellement column vector of OLS estimator of the regression coefficient and where �̂� is 

a (𝑛 × 1)column vector of n residual. 

As in k – variable case the OLS estimator is obtained by minimizing �̂� = 𝑦 − 𝑋�̂�                                   (1.4.3) 

 In OLS method RSS minimise with respect to parameter β the RSS is given by  �̂�′�̂� = (𝑦 − 𝑋�̂�)′(𝑦 − 𝑋�̂�) 

                                         = 𝑦𝑦′ − 2�̂�𝑋′𝑦 + �̂�′𝑋′𝑋�̂�       (2.6.4) 

Where use is made of the properties of the transpose of a matrix, namely, (𝑋�̂�)′ = �̂�𝑋′ 
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And since �̂�𝑋′𝑦 is a scalar (a real number), it is equal to its transpose   𝑦′𝑋�̂�. 

In scalar notation, the method of OLS consists in so estimating β1, β2, ………..βk that ∑ �̂�2𝑖 is as 

small as possible. This is done by differentiating (eq.) partially with respect to  �̂�1, �̂�2, �̂�3, ……………………… . �̂�𝑘 

and setting the resulting expression to zero. This process yield k simultaneous in k unknowns, the 

normal equation of the least- square theory. (𝑋𝑋′)�̂� = 𝑋′𝑦                                              (1.4.5) 

Note this feature of (𝑋′𝑋) matrix: 

(1) it gives the raw sum of square and cross products of the X variables, one of which is intercept 

term taking the value of 1 for each observation. The elements on the main diagonal give the 

raw sum of square, and those off the main diagonal give the raw sums of cross products (by 

raw we mean in original unit of measurement). 

(2) It is symmetrical since the cross product between 𝑋(𝑘−1)𝑖 and 𝑋𝑘𝑖 is same the same as the 

between 𝑋𝑘𝑖 and 𝑋(𝑘−1)𝑖 . 
(3) It is of order (k x k), that is, k rows and k columns.  

In (1.4.5) the known quantities are (𝑋′𝑋) and (𝑋′𝑦) (the cross product between the X variables and y) 

and the unknown is �̂� . Now using matrix algebra, if the inverse of (𝑋′𝑋)  exists, say(𝑋′𝑋)−1, the pre 

multiplying both side of (1.4.5) by this inverse, we obtain (𝑋′𝑋)−1(𝑋′𝑋)�̂� = (𝑋′𝑋)−1𝑋′𝑦 

But since (𝑋′𝑋)−1(𝑋′𝑋) = 𝐼, an identity matrix of order k x k, we get  𝐼�̂� = (𝑋′𝑋)−1𝑋′𝑦 �̂� = (𝑋′𝑋)−1𝑋′𝑦                                                  (1.4.6) 

Equation (1.4.6) is a fundamental result of the OLS theory in matrix notation. It shows how the �̂�  

vector can be estimated from the given data. 

Result and discussion:  

2.1. Model development 

A dataset comprising functional analogs centered around gossypol acetic acid with anti-BCL2 activity 

was initially collected from the NCBI database. Two-dimensional molecular descriptors were 

computed for each compound to digitize the observational data. A total of 255 descriptors were 

calculated using the PaDEL software developed by the National University of Singapore, providing a 
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comprehensive representation of the structural characteristics of the molecules. Initially, all 255 

descriptors were computed for each compound. However, not all of these descriptors significantly 

contributed to the bioactivity. Therefore, several steps were taken to eliminate less informative 

descriptors, including: 

1. Eliminating descriptors with constant values. 

2. Removing descriptors with more than 90% zero values. 

3. Excluding descriptors with constant or zero variance. 

Following these steps, highly correlated descriptors were excluded using a correlation matrix 

approach. Descriptors with a correlation coefficient greater than 0.3 (positive or negative) with 

the bioactivity vector of the available datasets were retained. Consequently, only five descriptors 

remained for further analysis. This matrix-based feature reduction technique effectively reduced 

the variable space and minimized the chances of correlation between descriptors. The removal of 

correlated descriptors reduced noise in the data, resulting in a final dataset consisting of 106 

compounds with their corresponding activity and five selected descriptors. The selected 

descriptors for modelling purposes were identified as MDEC.33, MDEO.11, MDEO.12, 

MDEO.22, and MLFER_S, which exhibited a strong association with activity and were deemed 

significant. For detailed descriptions of the descriptors used, further information can be accessed 

from the PaDEL descriptors website at http://www.ncbi.nlm.nih.gov. The coefficient matrix 

provided below highlights the variables that are considered significant in the model. 

Variable Estimate Std. Error t-value Pr(>|t|) 

(Intercept) -8.38500E+02 1.36800E+03 -6.13000E-01 0.5421 

StsC -6.73800E+00 3.37600E+00 -1.99600E+00 0.0504 

SdssC -2.07700E-01 3.15900E-01 -6.57000E-01 0.5133 

SssssC 2.61500E+01 2.39400E+01 1.09300E+00 0.2788 

SdsN -7.10800E-01 3.77900E-01 -1.88100E+00 0.0647 

SsssN -1.68300E+00 1.20400E+00 -1.39700E+00 0.1672 

SdO 1.52700E-01 1.16800E-01 1.30700E+00 0.196 

SssO 3.24100E-01 3.23900E-01 1.00100E+00 0.3209 

SsOm 9.90500E-03 3.03700E-01 3.30000E-02 0.9741 

SsF 3.80100E-02 1.06100E-01 3.58000E-01 0.7213 
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SssS 5.81600E-02 7.12600E-01 8.20000E-02 0.9352 

SddssS -6.49000E-02 2.59500E-01 -2.50000E-01 0.8033 

SsCl 5.61600E-01 1.82000E+00 3.09000E-01 0.7587 

SsBr -3.57200E+00 2.32100E+00 -1.53900E+00 0.1289 

fragC -7.56900E+00 4.23600E+00 -1.78700E+00 0.0789 

nHBAcc 7.23800E+00 1.03900E+01 6.97000E-01 0.4887 

Kier1 -1.05600E+03 9.48100E+02 -1.11400E+00 0.2697 

Kier2 -4.69700E+01 1.86100E+02 -2.52000E-01 0.8015 

Kier3 5.27400E+00 4.94900E+01 1.07000E-01 0.9155 

nAtomLC 2.03200E+03 1.27500E+03 1.59400E+00 0.116 

nAtomP 2.05200E-02 2.03600E-02 1.00800E+00 0.3174 

nAtomLAC -2.98500E+01 6.03600E+01 -4.95000E-01 0.6227 

MLogP 1.50000E+00 1.02200E+01 1.47000E-01 0.8838 

McGowan_Volume -2.47000E+01 1.36600E+02 -1.81000E-01 0.8571 

MDEC.11 -1.64600E+00 1.39000E+00 -1.18400E+00 0.2408 

MDEC.12 -1.92500E-03 2.80000E-01 -7.00000E-03 0.9945 

MDEC.13 4.61600E-02 1.71000E-01 2.70000E-01 0.7881 

MDEC.14 4.67600E+01 4.28400E+01 1.09200E+00 0.2793 

MDEC.22 -6.95400E-03 4.10900E-02 -1.69000E-01 0.8662 

MDEC.23 1.37700E-02 1.87700E-02 7.34000E-01 0.4658 

MDEC.33 -5.05200E-02 2.19400E-02 -2.30300E+00 0.0247* 
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MDEO.11 -2.33500E+00 1.02700E+00 -2.27400E+00 0.0264* 

MDEO.12 -4.54800E+00 2.09000E+00 -2.17600E+00 0.0334* 

MDEO.22 2.12600E+01 8.08600E+00 2.62900E+00 0.0108* 

MDEN.11 -6.41300E-01 3.13400E+00 -2.05000E-01 0.8385 

MDEN.12 7.89100E+00 1.12900E+01 6.99000E-01 0.4874 

MDEN.13 -4.30800E+00 3.58700E+00 -1.20100E+00 0.2343 

MDEN.22 4.81500E+00 5.52900E+00 8.71000E-01 0.3872 

MDEN.23 1.91300E-01 1.87400E+00 1.02000E-01 0.919 

MDEN.33 -5.54200E-01 3.57200E+00 -1.55000E-01 0.8772 

MLFER_BH 6.38100E+01 3.86800E+01 1.65000E+00 0.1041 

MLFER_BO -6.08300E+01 3.82400E+01 -1.59100E+00 0.1168 

MLFER_S -4.56400E+00 2.24900E+00 -2.02900E+00 0.0468* 

MLFER_E 2.48700E+00 2.12000E+00 1.17300E+00 0.2452 

QSAR model equation –  

Predicted log IC50 (µM) =      -0.05052 x (MDEC.33) 

      -2.33500 x (MDEO.11) 

       -04.54800 x (MDEO.12) 

       +21.26000 x (MDEO.22) 

        -4.56400  x (MLFER_S) 

        -838.50  

[Regression coefficient (r2) = 0.7314 and Cross validation coefficient (rCV2) = 0.8299] 

The developed QSAR model equation demonstrated a relationship between in vitro experimental 

activity (IC50) and five chemical descriptors. The model exhibited a regression coefficient (r2) of 

0.73, indicating a 73% correlation between activity and descriptors in the training dataset. The cross-

validation regression coefficient (rCV2) was 0.82, indicating an 82% prediction accuracy of the 

QSAR model. The analysis revealed that the descriptor MDEO.22 displayed a positive correlation 
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with increased biological activity against lung cancer cell lines, while MDEC.33, MDEO.11, 

MDEO.12, and MLFER_S showed negative correlations, indicating that higher values of these 

descriptors corresponded to decreased activity.   

 

Figure 2.1.  Graphical plot of multiple linear regression analysis which indicates linear relationship 

between experimental and predicted log IC50 with r2= 0.73.  

 

Figure 2.2.  Residual plot of multiple linear regression analysis for experimental and predicted log 

IC50.  

2.2. Validation of QSAR model 

To test the internal stability and predictive ability, QSAR model was validated by the internal, 

external validation and randomization test procedure: 
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2.3. Internal Validation 

Internal validation was carried out using leave-one-out (LOO) method. For calculating cross 

validation regression coefficient (rCV2), each molecule in the training set was eliminated once and the 

activity of the eliminated molecule was predicted by using the model developed by the remaining 

molecules. The cross-validation regression coefficient (rCV2) was calculated using the equation which 

describes the internal stability of a model. 

 

2.4. External Validation 

For external validation, the activity of each molecule in the test set was predicted using the model 

developed by the training set. The regression coefficient (r2) value is calculated as follows. 

 

Thus, the regression coefficient (r2) value is indicative of the predictive power of the current model 

for external test set. For this researcher has used only eight compounds for test. Generally, a QSAR 

model was considered to have a high predictive power only if the rCV2 was >0.6 for the test set.  

2.5. CONCLUSION 

The robust QSAR model was developed by the multiple linear regression method in order to correlate 

the chemical structures of selected compounds to its reported anticancer activities. The correlation in 

terms of r2 and prediction accuracy in terms of rCV2 of derived QSAR model were 0.73 and 0.82 

respectively. The QSAR study indicates that chemical properties viz., MDEC.33, MDEO.11, 

MDEO.12, MDEO.22and MLFER_S are correlate well with anticancer activity. These inferences and 

results will offer useful references to understand the molecular mechanism and to direct the design of 

new anticancer drug with improved activity. 
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