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Abstract

Yano, Houh and Chen [1] have studied the structure defined by the tenosor field ¢ of type (1,1)
satisfying ¢* + ¢? = 0. Gadea and Cordero [2] have obtained the integrability conditions of these
structures. The purpose of this paper is to define and study F, (K , (k — 2))—structure. Integrability
conditions of such a structure have also been studied.
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1. Fo(K, (K — 2))-Structure

Let M™ be an even dimensional differentiable manifold of differentiability class C®. Suppose there exists
on M™ a tensor field F of type (1,1) and of class C* satisfying

FX +a?FK-2=0 (1.1)
where K is an odd positive integer and ’a’ is any complex member not equal to zero. Also
(2RankF — RankFX~1) = dimM™ (1.2)
Let us define the operators ’s’ and ’t’ on M™ as follows:

i _ FK—1
(@)s = (VKD —s

and (1.3)
(i)t = 1 — (=260 E

ak-1

I denotes the unit tensor field. Thus we have.

Theorem 1. For The (1,1) tensor field F satisfying equation (1.1) the operators ’s’ and ’t’ defined by
(1.3) when applied to the tangent space of M™ at a point are complementary projection operators.

Proof.
We have from the equation (1.3).
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s+t=1 (1.4)
Also,
2K-2 K-2
SZ _ (_)(K—I)F = FK F
a2k-2 " q2Kk-2
K-2 FK—4
_ 2pK-2 _ K
a‘F a2k-2 F "q2k—4
2pK—4 K-6
2 pK-2 _ 20K
= (2)°F 2K—-4 —)°F 2K—6
...... K_lK—(K—l) p
_ 2pK-2 — (_\1/2(K-1)
=(=) 2 a’F 2K—(K-1) = ()Y ak-1
or
s?=s (1.5)
Also
FZK—Z FK—l
2 _ K-1 1/2(K-1
t?2 =1+ () )a21<—2_2(_)/( )F
FK—l
=] — (_)1/2(K—1)
ak-1
or
t? =t (1.6)
Further
FK—l FZK—Z
e — 1/2(K-1 K-1
st =ts = ()™ )F_(_)( )aZK—Z
=0 as s?=s
st=ts=0 (1.7)

The theorem follows by virtue of equation (1.4) to (1.7).

Let S and T be the complementary distributions corresponding to the projection operators ’s’ and ’t’
respectively. If the rank of F is constant every where and equal to r then dimS = 2r — n and dimT =
2n — 2r,n < 2r < 2n. Obviously dimensions of S and T are also even. Let us call such a structure on
M™ as F, (K , (K — 2))-structure of rank r.
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Theorem 2. For a tensor field F (# 0) of type (1,1) satisfying (1.1) and for the operators ’s’ and 't’ given

FK 2 FK—Z FK—Z

(l) ak- ST akK-1 = gK-1
by the equations (1.3) we have and (1.8)
tFk=2

.. FK—2
(i) ot = S = 0

Proof.
Proof follows easily by virtue of equations (1.1), (1.3) and (1.8).

Theorem 3. For a tensor field F (# 0) satisfying the equation (1.1) and for the operators s’ and ’t’
given by (1.3), we have
(i)Fs = sF = —(—)12&-DZ—
(iD)(F2 +a%)s = 0 (1.9)
(iii)F?t — a®s = F?

Proof.
Proof follows easily in a way similar to that of the theorem (2).

Theorem 4. F,(K, (K — 2))-structure of maximal rank is a GF-structure.

Proof.
If the rank of F is maximum, r = n. So dimS = n and dimT = 0.
Therefore
t=0 and s=1
So
F(K 1)
( )1/2(1( 1) R a(K—l) (1.10)
or
F(K 1)
(— )1/2(1( V- D = (1.11)

Operating the equation (1.10) by F? and making use of the equation (1.1) we get

F&-1)

F2 — (_)1/2(1(—1)( aZ) =0

a®-1)
which in view of the equation (1.11) takes the form
F2+a?l=0
Taking —a = A2, the above equation takes the form
2 = )21
Hence M™ admits a GF-structure.
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2. Nijenhuis Tensor of F,(K, (K — 2))-structure
The Nijenhuis tensor formed with such F is given by
N(X,Y) = [FX,FY] = —F[FX,Y] — F[X,FY] + F%[X,Y] (2.1)

Since s + t = I hence (2.1) takes the form

N(X,Y) =[FsX+ FtX,FsY + FtY] — F[FsX + FtX,sY + tY]

—F[sX + tX,FsY + FtY] + F2[sX + tX,sY + tY]

= {[FsX,FsY] — F[FsX,sY] — F[sX,FsY] + F?[sX,sY]}

+{[FsX,FtY] — F[FsX,tY] — F[sX,FtY] + F?[sX,tY]}

+{[FtX,FsY] — F[FtX,sY] — F[tX,FsY] + F2[tX,sY]}

+{[FtX,FtY] — F[FtX,tY] — F[tX, FtY] + F?[tX, tY]}
or

N(X,Y) = N(sX,sY) + N(sX, tY) + N(tX,sY) + N(tX,tY) 2.2)
def

If the distribution S is integrable, N(sX, sY) is exactly the Nijenhuis tensor of F /S Z FS. If the

def
distribution T is integrable, N (tX, tY) is exactly the Nijenhuis tensor F /T = FT.
If Ly F denotes the Lie-derivatives of the tensor-field F with repsect to a vector field Y, Ly F is the tensor-
field of the same type as F. Also

(LyF)(X) = F[X,Y] — [FX,Y] (2.3)
In view of the equations (2.1) and (2.3), we have
N(sX,tY) = F(LeyF)(sX) = (LpeyF)(sX) (2.4
and

N(tX,sY) = F(LsyF)(tX) = (Lpsy F)(tX) (2.5)

3. Integrability Conditions
In this section, we shall obtain the partial integrability conditions of F, (K , (K — 2))—structure (K odd).
Theorem 5. For any two vector fields X and Y the following results hold:

1. The distribution S is integrable if and only if tN(sX,sY) = 0;

2. The distribution T is integrable if and only if tN(tX,tY) = 0.

Proof.

We know that for any two vector fields X and Y, the distributions S and T are integrable if and only if
t[sX,sY] = 0 and s[tX, tY] = 0 [2]. Thus in view of the equations (1.7), (1.9), (1.10) and (2.1), the proof
of the theorem follows.
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Theorem 6. For any two vector fields X, Y, the distributions S and T are both integrable if and only if
N(X,Y) = sN(sX,sY) + N(sX,tY) + N(tX,sY) + tN(tX,tY) 3.D

Proof.
In Consequence of the equations (1.4) and (2.2) we can write

N(X,Y) =sN(sX,sY)+tN(sX,sY)+ N(sX,tY)

+N(tX,sY) + sN(tX,tY) + tN(tX,tY) G2

The proof of the theorem follows by virtue of equation (3.2) and the theorem (5).

Theorem 7. Ifthe distribution S is integrable, a necessary and sufficient condtion for the GF-structure
defined by F /S = Fs on each integral manifold of S to be integrable is that for any two vectors field X an
Y.

N(sX,sY) = 0 (3.3)
which is equivalent to sN(sX,sY) =0

Proof.

Suppose the distribution S is integrable. Then F induces on each integral manifold of S, a GF-structure.
The induced structure is integrable if and only if its Nijenhuis tensor vanishes identically. Thus the proof
of this theorem follows.

Definition 1. We say that F, (K , (K — 2))-structure is 'sg-partially integrable’ if the distribution S is
integrbale and the GF-structure induced from F on each integral manifold of S is also integrable.

Theorem 8. For any two vector fields X and Y, a necessary and sufficient condtion for F, (K , (K — 2))—
structure to be ’Sg-partially integrable’ is that

N(sX,sY) =0 (34

Proof.
Proof follows easily from the theorem (5)(i) and (7).

Theorem 9. Ifthe distribution T is integrable, a necessary and sufficient condition for the structure
defined by F /T = Fr on each integral manifold of T to be integrable is that

N(tX,tY) =0 (3.5)
for arbitrary vector fields X and Y.

Proof.
Proof follows easily in a way similar to that of the theorem (7).
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