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Abstract 

We studied in this paper the optimal investment strategies for DC pension fund with multiple 

contributors by applying Hamilton Jacobi – Bellman equation, Legendre transformation and dual 

theory to find the explicit solution for CRRA and CARA utility functions respectively. We obtained a 

general solution for CARA utility function similar to that with only one contributor as in Gao (2009) 

and a different result for CRRA utility function when compared to the one with one contributor. 
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1. Introduction  

Defined contribution pension is very crucial in retirement income system in a lot of countries and 

there is a growing trend to automatically involve all workers in it. In as much the DC scheme is 

relatively new compared to the defined benefit (DB) pension scheme, it forms a determining factor of 

the old age income adequacy for future retirees. This system underscores the need to understand better 

the risks that affect the income provided by this plan. There are basically four factors that determine 

retirement income adequacy in DC plans namely length of contribution and retirement period, level of 

contributions, management cost and investment strategies. This study focuses on investment 

strategies, since members of DC pension plan has some leverage in choosing their investment plan, 

they have to solve the optimal investment strategies problem to determine the best way to invest and 

maximize profit while reducing the risk involve. The most commonly used utility functions are the 

constant relative risk aversion (CRRA) see Cairns et al.(2006), Gao (2008), Boulier et al. (2001), 

Deelstra et al (2003), Xiao et al (2007)  and constant absolute risk aversion (CARA) Battocchio and 

Menoncin (2004), Gao (2009) 

The optimal investment for DC with stochastic interest rate have been studied by Boulier et al. (2001) 

and Battocchio and Menoncin (2004)] where the interest rate was Vasicek model, Chubing and 

Ximing (2013), Deelstra et al (2003) and Gao (2008), studied the affine interest rate which include the 

Cox- Ingeroll- Ross (CIR) model and Vasicek model. Recently, more attention has been given to 

constant elasticity of Variance (CEV) model in DC pension fund investment strategies. As Geometric 

Brownian motion (GBM) can be considered as a special case of the (CEV) model, such work 

extended the research of Xio et al (2007) where they applied (CEV) model to derive dual solution of a 

CRRA utility function via legendre transform, also Gao (2009) extended the work of Xiao et al (2007) 

by obtaining solutions for investor with CRRA and CARA utility function, recently Dawei and Jingyi 

(2014) extended the work of Gao (2009) by modelling pension fund with multiple contributors where 

benefit payment are made after retirement , he went on to find the explicit solution for CRRA and 

CARA using power transformation method. In this paper we solve the optimized problem via 
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Legendre transformation method and dual theory and compare the solution with that of Dawei and 

Jingyi (2014) 

2. Mathematical Model 

In a pension fund system with multiple contributors, it is expected that payment are remitted to 

contributors who have retired from service and the payment continues till the death of a specific 

contributor after which payment is stopped for that particular contributor. As stated by Dawei and 

Jingyi (2014) that the payment is a stochastic process and assume the Brownian motion with drift as 

follows 

                                              𝐶 = − ° ,                                         (1) 

where  and  are positive constants and denote the amount given to the retired contributors and that 

which which is due death contributors which are out of the system. 

Assume the market is made up of risk free asset (cash and bond) and risky asset (stock). Let Ω, , 𝑃  

be a complete probability space where Ω is a real space and 𝑃 is a probability measure, { ° , } is a standard two dimensional motion.  is the filtration and denotes the information 

generated by the Brownian motion.   

 Let  denote the price of the risk free asset, with dynamics given as  

                                                    = ,                                       (2) 

and let  denote the risky asset and its dynamics is given based on its stochastic nature and the 

price process described by the CEV model in  Gao (2009) as 

                                                       = 𝜇 + 𝛽 .                         (3) 

where 𝜇 an expected instantaneous rate of return of the risky asset and satisfies the general condition 𝜇 > . 𝛽 is the instantaneous volatility, and 𝛽 is the elasticity parameter and satisfies the general 

condition 𝛽 < . 

Now consider that in DC plans the contributions provided by the contributors are fixed and then 

without loss of generality, we assume that the number of contributors is constant and so is the 

contribution rate = + 𝜃  with safety loading 𝜃 > . If there is no investment, the dynamics of 

the surplus is given by  

                                                 = − 𝐶 = 𝜃 + ° .          (4) 

Let  denote the wealth of pension fund at ∈ [ , ],  let 𝜋  denote the proportion of the pension 

fund invested in the risky asset  and − 𝜋 , the proportion invested in risk free asset . Hence the 

dynamics of the pension wealth is given by 

                                  = 𝜋 + − 𝜋 + 𝜃 + ° .                      (5) 

Substituting (2) and (3) into (5) we have 

                   =  [ 𝜋 𝜇 − + + 𝜃 ] + ° + 𝜋 𝛽                        (6) 

3. Optimization Problem 

In this section we are interested in maximizing the utility of the plan contributor’s terminal relative 

wealth. Let 𝜋  represent which is define to be the utility attained by the plan contributors from a 

given state  at time t as  
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                               𝜋 , , = 𝜋 [ ( ) ∣∣ = , = ],                                  (7) 

where  is the time,  is the price of the risky asset and  is the wealth. Our aim is to obtain the 

optimal value function  

                                                                   , , = sup𝜋 𝜋 , ,                       (8) 

and the optimal strategy 𝜋  such that  

                                                                             𝜋 , , = , , .                     (9) 

The Jacobi Hamilton-Jacobi-Bellman (HJB) equation associated with the optimization problem is  

                        + 𝜇 + + 𝜃 𝑣 + 𝛽+ + 𝑣𝑣 +  

                   sup { 𝜋 𝛽 𝑣𝑣 + 𝜋[ 𝜇 − 𝑣 + 𝛽+ 𝑣 ]} = .                          (10) 

To obtain the first order maximizing condition for 𝜋∗, we solve  

                                 𝜋 𝛽 𝑣𝑣 + 𝜋[ 𝜇 − 𝑣 + 𝛽+ 𝑣 ] = ,                 (11) 

so that 

                                𝜋∗ = − [ 𝜇− 𝐻𝑣+𝑘 𝛽+ 𝐻𝑣 ]𝑘 𝛽𝑣𝐻𝑣𝑣 .                    (12) 

Substituting (12) into (10), we have 

+ 𝜇 + + 𝜃 𝑣 + 𝛽+ + 𝑣𝑣 − [ 𝜇− 𝐻𝑣+𝑘 𝛽+ 𝐻𝑣𝑘 𝛽𝐻𝑣𝑣 ] = .        (13) 

So that 

              + 𝜇 + + 𝜃 𝑣 + 𝛽+ [ − 𝐻𝑣𝐻𝑣𝑣 ]  

                + 𝑣𝑣 − 𝜇−𝑘 𝛽 𝐻𝑣𝐻𝑣𝑣 −  𝜇 − 𝐻𝑣𝐻𝑣𝐻𝑣𝑣 = .     (14) 

4. Legendre Transformation 

Since the differential equation obtained in (14) is a non linear PDE and quite complex to solve, we 

will employ the Legendre transform and dual theory to transform it to a linear PDE 

Theorem 4.1 [10]: Let : 𝑛 →  be a convex function for > , define the Legendre transform 

                                                       = max { − },                (15) 

where  is the Legendre dual of . 

Since  is convex, from theorem 4.1 we can defined the Legendre transform 

                          ̂ , , = sup{ , , − ∣ < < ∞ }  < < .              (16) 

where ̂  is the dual of  and >  is the dual variable of .  

The value of  where this optimum is attained is denoted by , , , so that 

                        , , = inf{ ∣∣ , , + ̂ , , }  < < .                     (17)  

The function g and ̂are closely related and can be refers to as the dual of H. These functions are 

related as follows 

                                         ̂ , , = , , − .               (18) 
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Where  , , = , 𝑣 = , = − ̂ . 
 

At terminal time, we denote ̂ = sup{ − ∣ < < ∞ }, 
and = sup { ∣ + ̂ . 
As a result  

                                                              = ′ − ,                                  (19) 

where  is the inverse of the marginal utility U and note that , , =   

At terminal time , we can define , , = infv> { ∣∣ + ̂ , , } ̂ , , = supv> { − }  

so that  

                                                                        , , = ′ − .                               (20) 

Next we differentiate (18) with respect to , ,   

     = ̂ , = ̂  , 𝑣 = , 𝑣 = −�̂� 𝑧�̂�𝑧𝑧  , 𝑣𝑣 = −�̂�𝑧𝑧   , 𝑣 = ̂ − �̂� 𝑧�̂�𝑧𝑧  .                          (21) 

Substituting (21) into (14),we have ̂ + 𝜇 ̂ + + 𝜃 + 𝛽+ ̂ − �̂�𝑧𝑧  − 𝜇−𝑘 𝛽 ̂ − 𝜇 − ̂   =  (22) 

and 

                                                                    𝜋∗ = − [ 𝜇− �̂�𝑧𝑧  −𝑘 𝛽+ �̂� 𝑧].𝑘 𝛽𝑣                   (23) 

Differentiating (22) and (23) with respect to  and using = = − ̂ , we have 

                            + − + 𝜃 + 𝛽+ + 𝜇−𝑘 𝛽 −   

                                             + 𝑔𝑧𝑧  𝑔𝑧 + 𝜇− 𝑔𝑧𝑧  𝑘 𝛽 − 𝜇 −   =                 (24) 

and 

                                                              𝜋∗ = − [ 𝜇− 𝑔𝑧−𝑘 𝛽+ 𝑔 ]𝑔𝑘 𝛽 .                 (25) 

 

5. Optimal investment strategy for specific utility 

In this section we give the explicit solution for the CRRA and CARA utility functions. 

Assume the plan contributor takes a power utility function 

                                                                = 𝑝 ,    < , ≠                (26) 

The relative risk aversion of a decision maker with utility described by the above equation is constant 

and (26) is a CRRA utility. 
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Proposition 5.1: The relative risk aversion of a decision maker with CRRA utility is not constant at 

different time point for different price of risky asset. 

Proof: 

Assume the relative risk aversion of a decision maker with CRRA utility is constant regardless of 

changes in t and s. 

We conjecture a solution to (26) with the following form , , = ℎ , [ 𝑝− ] + ,           = , ℎ , = . 
Then  

                          = ℎ 𝑝− + ′, = − ℎ− 𝑝− − , = − ℎ− 𝑝− − ,    
                           = − ℎ− 𝑝− − , = ℎ 𝑝− , = ℎ 𝑝− .         (27) 

Substitute (27) into (24) we have  [ℎ + ℎ − ℎ + 𝛽+ ℎ − ℎ− 𝜇−𝑘 𝛽 − + 𝜇−𝑘 𝛽 − ℎ− − 𝜇 − ℎ− ] 𝑝− +ℎ− −𝑝− + ( ′ + − 𝜃 ) = .                          (28) 

From (28) we have ℎ + ℎ − ℎ + 𝛽+ ℎ − ℎ− 𝜇−𝑘 𝛽 − + 𝜇−𝑘 𝛽 − ℎ− − 𝜇 − ℎ− =  (29)  

So that 

                                                                 
ℎ− =                       (30) 

and 

                                                                    ′ + − 𝜃 = .                     (31) 

From (30), since >  we can see that the earlier assumption that ℎ , = , is a contradiction. 

Hence the relative risk aversion of a decision maker with CRRA utility is not constant at different 

time point for different price of risky asset. 

 

Assume the contributor takes an exponential utility 

                                                            = − − ,     > .        (32) 

The absolute risk aversion of a decision maker with the utility described in (32) is constant and is a 

CARA utility 

Since , , = ′ −  with the CARA utility function we obtain 

                                                                 , , = − .                 (33) 

Hence we conjecture a solution to (24) with the following form 

                                    , , = − [ + , ] + ,               (34) 

with boundary conditions = , = , , =  

                          = − [ ′ + , + ] + ′ ,  
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                = − , = −  , = , = − , = .             (35) 

Substituting (35) into (24), we have 

                       [ ′ − ] + [− ′ + + 𝜃 ] +  

                     [ + + 𝛽+ + 𝜇−𝑘 𝛽 − + ′ − − ] = . 
Such that      

                                            ′ − =                   (36) 

and 

                     + + 𝛽+ + 𝜇−𝑘 𝛽 − − = .   (37) 

So that 

                                                 − ′ + + 𝜃 =     (38) 

Solving (36) and (38), we have 

                                                          = − −                 (39) 

and 

                                        = − 𝜃𝑎 − − − .                (40) 

Next we conjecture a solution of (37) with the following structure , = + − 𝛽, = , = , = + − 𝛽, = − 𝛽 − 𝛽− , =𝛽 𝛽 + − 𝛽− .                                                                                            (41) 

 

Substituting (41) into (37) we have + 𝛽 𝛽 + − − + − 𝛽 [ − 𝛽 + 𝜇−𝑘 ] = ,             (42) 

so that 

                                + 𝛽 𝛽 + − − = ,              (43) 

and  

                                            − 𝛽 + 𝜇−𝑘 = .              (44) 

Solving (44) with the given condition gives; 

                                             = 𝜇−4𝑘 𝛽 [ − 𝛽 − ].            (45) 

Next substituting (45) into (43) and solving (43) with the given condition we have  = [ 𝛽+ 𝜇−4 − − ] − − [ 𝛽+ 𝜇−8 𝛽 ( − 𝛽 − )].          (46) 

Hence the solution to (24) for CARA utility function is given as  , , = − [ ( + , )] + , = − , 
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= − 𝜃 [ − − − ], 
and , = [ 𝛽+ 𝜇−4 − − ] − − [ 𝛽+ 𝜇−8 𝛽 ( − 𝛽 − )]  
                                                               + [ − 𝛽 𝜇−4𝑘 𝛽 ( − 𝛽 − )].                (47) 

The optimal investment strategy is given as 

                                                                  𝜋∗ = − [ 𝜇− 𝑔𝑧−𝑘 𝛽+ 𝑔 ]𝑔𝑘 𝛽   

with 

                                                                            = − − .   (48) 

                                             = − − 𝛽− 𝜇−𝑘 ( − 𝛽 − )],              (49) 

and 

                                            𝜋∗ = 𝜇−𝑘 𝛽𝑔 − [ + 𝜇− ( − 𝛽 − )].             (50) 

If 𝛽 = 𝜎∗  , 𝜎∗ = 𝜇−𝜎∗  , = + 𝜇− ( − 𝛽 − )   = ,  
then 

                                                              𝜋∗ = −  𝜎∗  .              (51) 

Which is the same result obtained in Dawei and Jingyi (2014) when it was solved using power 

transformation method. Thus our result in (30) generalizes the result in Dawei and Jingyi (2014) 

Corollary 5.1 

 is monotonic increasing with respect to time and satisfies the condition 

                                   + 𝜇− ( − − 𝛽 ) . 

Proof 

Let = + 𝜇− ( − 𝛽 − ) , 𝜇 − > , 𝛽 < , then 

ˊ = −𝛽 𝜇 − ( − − 𝛽 − ) 

This implies that  is monotonic increasing function. 

When = ,  = + 𝜇 − ( − − 𝛽 ). When =  and = , = . 
Therefore  
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+ 𝜇 − ( − − 𝛽 ) . 
Proposition 5.2: 

For an investor with CARA utility function, the optimal investment strategy is given as 

                                          𝜋∗ = { −  𝜎∗  , 𝜋∗,         𝜋∗ > . 

Let  denote the invested capital, we assume that for any  >   that  >  , also  

                                                 𝜎∗ = 𝜇−𝑘𝜎∗ > . 
We consider the following cases 

Case1 

If  𝜇 − ( − − 𝛽 ) −   𝜎∗ < 𝜇 − 𝜎∗   
and  > − ln 𝜇 − + ln( ) − ln 𝜎∗ ,  
then  𝜋∗ > . 
From proposition 5.2, 𝜋∗ = . The implication of this is that the investor invest in only risky asset 

Case 2 

If  

                  
𝜇− ( − − 𝛽 ) < − ,   𝜎∗ < 𝜇 − 𝐿𝑘𝜎∗ 𝑇𝑁  

 and  > − ln 𝜇 − − ln 𝜎∗ .𝜏  

Then 𝜋∗ .   From the proposition 5.2, 𝜋∗ = −  𝜎∗   

The implication is that the investor invests the proportion equal to −  𝜎∗   in the risky asset. 

6. Conclusion 

We have applied the Legendre transformation method and dual theory to solve the optimized problem 

for the optimal investment strategy for DC pension fund with multiple contributors which was solved 

using power transformation method by Dawei and Jingyi (2014) and we have shown that solution 

obtained via power transformation can as well be obtained using Legendre transform. In fact the 

solution via Legendre transform generalised that via power transform. Also we observed that the 

optimal investment strategy with only one contributor for CRRA is different from that of multiple 

contributors while that of CARA is the same with one contributor. 
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