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Abstract 

During study of problem for geostrophic and static equilibrium in atmosphere L distribution function 

was deduced. L function possesses unique parameter θM, Comparing with other famous probability 

distribution L distribution function has similarly certain properties such as:  

(1) Variance is (θM /3)
2; standard variance is θM/3, mathematical expectation equal to zero,  

(2) Fourth moment (θM)
4
 /25, coefficient of kurtosis is 0.24, which more 0.24 than that of Normal 

distribution function. Third moment and coefficient of skew are both zero.  

(3) m-th moment exist, probability is equal to2/e (74.04％˅within coverage of (-θM /e < θ≤ θM /e); 

probability approximately 70.04％ within coverage of (-θM /3<θ≤ θM /3);  

(4) Continuous random variables of L function thickly more scatter in area near to its mean value 

than Normal distribution function does. 

Keywords: L probability density function; Variance; Expected value; The coefficient of kurtosis; 
m-th moment. 

1. Probability Function  

1.1 Probability Density Function  

Assumed some physical system to be falling into L distribution in damped physical system, L probability 

density function may be postulated as below;  
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Here, θ is the random variable, θM is initial value and maximum amplitude when t=0 and also unique 
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parameter in the function, as θ is approaching 0 ,L function has the odd singularity point, however, any its 

integral function tends to convergence, shown as Fig 1.      

1.2 m-th moment of L function  

When m is denoted even 
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m=2˄variance˅, m=4˄fourth moment˅ 

When m is denoted odd
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m=1˄expected value˅, m=3˄third moment), respectively. 

In proof of above, below can be certified firstly by using L' Hopital's Rule  
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1.3 The Distribution Function 

We integrate formula (1), L probability density function, and then distribution function is verified below 
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Certainly )()(  fF        

1.4 The how many of probability in any interval ( θ1 , θ2˅  

According to the theorem 

 baaFbFbYaP ),()()(  

Therefore the probability of any interval ˄θ1 , θ2˅for L distribution is calculated via below formula 
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For example:  

P (θ1<θ<θ2) =2/e (approximately 74.04%), If θ1=-θM/e, θ2=θM/e. 

Here e =2.718281828459, obviously θM/e is very closer to (θM /3), comparatively, the probability. The 

Normal distribution lies in the interval between ±σ˄its standard deviation), is 68.3% or so, but the 

probability of L distribution is nearly exact 70.0% in same interval. In addition the limit of formula above 

exists when θ1→0,θ2→0, shown as Fig 1 and Fig 2.   

1.5 The exits of distribution function when closer to zero 
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Fig.1 L probability density function                 Fig.2 L probability distribution function 
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Above similarly through L'Hopital's Rule  
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1.6 Demonstration of density function and distribution function  

In fig 1 there  

P (-θM/e＜θ＜θM/e ) ≈ 74%  

P (θM/e＜ θ＜ θM) ≈13% 

P( -θM ＜θ ＜θM/e ) ≈ 13% 

(θM-θM/e)/ θM≈62.9%≈61.8 %( golden section) 

f(θ)→∞,(θ=0)，f(θ)→0,(θ= ±θM ) 

In fig 2 also  

AB = DE = (1/2)-(1/e) =13% 

BC = CD = (1/e) = 37% 

BD =BC+CD = (2/e) = 74% 

AE = AB+BC+CD+DE = 1-(2/e)+ (2/e) =100%  

2. L distribution characteristics   

2.1 Some important characteristics  

Expected value  
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Coefficient of skew: 0
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 Fourth moment:
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  Coefficient of kurtosis: 24.03
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2.2 Comparison between L distribution and Normal distribution   

Probability of L distribution and normal distribution when θ in the context of σ; 2σ; 3σ, respectively, here 

σ denote respective standard deviation 

 L distribution  

P (- σ < θ < σ) = 0.70;  P(-2 σ < θ < 2σ) = 0.94;  P(-3σ < θ < 3σ) =1 

 Normal distribution
 [1~2] 

  P (-σ < x < σ) = 0.683;  P (-2σ < θ < 2σ) = 0.955;  P(-3σ < θ < 3σ) = 0.997 

2.3 Comparison between L distribution and some other well-known distribution    

Tab1 difference of some basic parameter for some distribution 

  

The classification of 

distribution function  

  

Mean 

  

variance 

  

4th central  

moment 

  

CFK
*
 

(Normal) µ σ2
 3.0 0 

(Exponential) 1/λ 1/λ2
 9.0 6 

(Gamma) a/λ2 
a/λ2

 3+6a b/a 

**
(Uniform)

 
(a+b)/2 (a-b)

 2
/12 1.8 -1.2 

(Logarithm) 0 (θM/3)
2
 3.24 0.24 

*CFK is abbreviated of Coefficient of Kurtosis. The curve of distribution becomes shape of sunken or 

hollow and depressed as CFK<­1.2. 

2.4 Determination numerical value of θ =θa(2/e)= θa(74.04%) and Where is θ as probability =2/e 

Define follow  
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Determine θa, finally by solution, θa (2/e)=θM/e. Coefficient of skew is zero, imply L symmetric around 

zero, the coefficient of kurtosis 0.24, standard deviation θM/3 , variance (θM/3 )2
 . 

3. Summaries 

In a word, L distribution with only one parameter θM is shown as its mean 0 ,its variance (θM/3)
2
, its 

standard deviation θM/3, its fourth moment (θM)
4
/25, third moment zero, the coefficient of kurtosis 0.24, 

coefficient of skew is zero ,m-th moment˄θM)
m
/(m+1)

2，in addition, other characteristic, ratio of  

(θM-θM/e)/ θM nearly to golden ratio, as well as P(-θM/e<θ<θM/e)=2/e≈74.04%, similarly, P(-θM/3<θ<θM/3) 

≈70.0%, in summary , continuous random variables of L function concentrically scatter in area near to its 

mean value than normal function does.    
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