

# A NEW DISTRIBUTION — L PROBABILITY DISTRIBUTION FUNCTION

\*wanli wang<sup>1,2,3</sup> shuming cai<sup>2</sup> yingqi xie<sup>3</sup>

<sup>1</sup> China meteorological administration (CMA), climate central of wuhan region, wuhan, hubei, china, 430074

<sup>2</sup>School of resource and environmental science of wuhan university, wuhan, hubei, china, 430079. <sup>3</sup>Department of geophysics, yunnan university, kunming 650091

> Email: <u>xiaowanw2002@yahoo.com;</u> <u>xiaowanw@aliyun.com;</u> <u>642177543@qq.com;</u>

Date of revised paper submission: 07/03/2017; Date of acceptance: 16/03/2017 Date of publication: 25/03/2017; \*First Author / Corresponding Author; Paper ID: A17101. Reviewers: Akbar, Q., India; Shukla, M. K., India.

#### Abstract

During study of problem for geostrophic and static equilibrium in atmosphere L distribution function was deduced. L function possesses unique parameter  $\theta_M$ , Comparing with other famous probability distribution L distribution function has similarly certain properties such as:

(1) Variance is  $(\theta_M/3)^2$ ; standard variance is  $\theta_M/3$ , mathematical expectation equal to zero,

(2) Fourth moment  $(\theta_M)^4$  /25, coefficient of kurtosis is 0.24, which more 0.24 than that of Normal distribution function. Third moment and coefficient of skew are both zero.

(3) *m-th moment exist, probability is equal to2/e* (74.04%) within coverage of  $(-\theta_M/e < \theta \le \theta_M/e)$ ; probability approximately 70.04% within coverage of  $(-\theta_M/3 \le \theta \le \theta_M/3)$ ;

(4) Continuous random variables of L function thickly more scatter in area near to its mean value than Normal distribution function does.

**Keywords:** L probability density function; Variance; Expected value; The coefficient of kurtosis; *m*-th moment.

## **1. Probability Function**

## **1.1 Probability Density Function**

Assumed some physical system to be falling into L distribution in damped physical system, L probability density function may be postulated as below;

$$f(\theta) = \frac{1}{4\theta_M} \ln(\frac{\theta_M}{\theta})^2 \qquad (-\theta_M < \theta < \theta_M)$$
(1)

Here,  $\theta$  is the random variable,  $\theta_M$  is initial value and maximum amplitude when t=0 and also unique

parameter in the function, as  $\theta$  is approaching  $\theta$ , L function has the odd singularity point, however, any its integral function tends to convergence, shown as Fig 1.

### 1.2 *m*-th moment of L function

When m is denoted even

$$v_m = \frac{1}{4\theta_M} \int_{-\theta_M}^{\theta_M} \theta^m \ln(\frac{\theta_M}{\theta})^2 d\theta = \frac{\theta_M^m}{(m+1)^2}$$

m=2 (variance), m=4 (fourth moment)

When m is denoted odd

$$v_m = \frac{1}{4\theta_M} \int_{-\theta_M}^{\theta_M} \theta^m \ln(\frac{\theta_M}{\theta})^2 d\theta = 0$$

m=1 (expected value), m=3 (third moment), respectively.

In proof of above, below can be certified firstly by using L' Hopital's Rule

$$\frac{\lim_{\theta \to 0} \frac{2}{m+1} \theta^{m+1} \ln \theta}{\frac{2}{(m+1)} \frac{\lim_{\theta \to 0} \ln \theta}{\lim_{\theta \to 0} \frac{1}{\theta^{m+1}}} \to 0$$

#### **1.3 The Distribution Function**

We integrate formula (1), L probability density function, and then distribution function is verified below

$$F(\theta) = \frac{1}{4\theta_M} \{ [\theta \ln(\frac{\theta_M}{\theta})^2 + 2\theta] + 2\theta_M \}$$
$$(-\theta_M < \theta < \theta_M)$$

Certainly  $F'(\theta) = f(\theta)$ 

## 1.4 The how many of probability in any interval ( $\theta_1, \theta_2$ )

According to the theorem

$$P(a < Y < b) = F(b) - F(a), -\infty < a \le b < \infty$$

Therefore the probability of any interval  $(\theta_1, \theta_2)$  for L distribution is calculated via below formula

$$P(\theta_{1} < \theta < \theta_{2}) = F(\theta_{2}) - F(\theta_{1})$$

$$= \frac{1}{4\theta_{M}} \int_{\theta_{1}}^{\theta_{2}} \ln(\frac{\theta_{M}}{\theta})^{2} d\theta$$

$$= \frac{1}{4\theta_{M}} \{ [\theta_{2} \ln(\frac{\theta_{M}}{\theta_{2}})^{2} + 2\theta_{2}] - [\theta_{1} \ln(\frac{\theta_{M}}{\theta_{1}})^{2} + 2\theta_{1}] \}$$

$$(-\theta_{M} < \theta < \theta_{M})$$

For example:

 $P(\theta_1 \le \theta \le \theta_2) = 2/e$  (approximately 74.04%), If  $\theta_1 = -\theta_M/e$ ,  $\theta_2 = \theta_M/e$ .

Here e = 2.718281828459, obviously  $\theta_M/e$  is very closer to  $(\theta_M/3)$ , comparatively, the probability. The Normal distribution lies in the interval between  $\pm \sigma$  (its standard deviation), is 68.3% or so, but the probability of L distribution is nearly exact 70.0% in same interval. In addition the limit of formula above exists when  $\theta_1 \rightarrow 0, \theta_2 \rightarrow 0$ , shown as Fig 1 and Fig 2.

#### 1.5 The exits of distribution function when closer to zero



Fig.1 L probability density function

Fig.2 L probability distribution function

Above similarly through L'Hopital's Rule

$$\lim_{\theta \to 0} \ln(\theta)^{\frac{\theta}{2\theta_M}} = 0$$

#### 1.6 Demonstration of density function and distribution function

In fig 1 there

$$P(-\theta_M/e \le \theta \le \theta_M/e) \approx 74\%$$

$$P(\theta_M/e \leq \theta \leq \theta_M) \approx 13\%$$

$$P(-\theta_M \leq \theta \leq \theta_M/e) \approx 13\%$$

 $(\theta_M - \theta_M / e) / \theta_M \approx 62.9\% \approx 61.8 \%$  (golden section)

$$f(\theta) \rightarrow \infty, (\theta=0), f(\theta) \rightarrow 0, (\theta=\pm\theta_M)$$

In fig 2 also

$$AB = DE = (1/2)-(1/e) = 13\%$$
$$BC = CD = (1/e) = 37\%$$
$$BD = BC+CD = (2/e) = 74\%$$
$$AE = AB+BC+CD+DE = 1-(2/e)+(2/e) = 100\%$$

$$AE = AB + BC + CD + DE = 1 - (2/e) + (2/e) = 10$$

## 2. L distribution characteristics

#### 2.1 Some important characteristics

Expected value

$$M(\theta) = \frac{1}{4\theta_M} \int_{-\theta_M}^{\theta_M} \theta \ln(\frac{\theta_M}{\theta})^2 d\theta = 0 \quad (-\theta_M < \theta < \theta_M)$$

Variance

$$v_2 = D(\theta) = \frac{1}{4\theta_M} \int_{-\theta_M}^{\theta_M} \theta^2 \ln(\frac{\theta_M}{\theta})^2 d\theta = (\frac{\theta_M}{3})^2$$

Standard deviation

$$\sigma = \frac{\theta_M}{3}$$

Third moment

$$v_3 = \frac{1}{4\theta_M} \int_{-\theta_M}^{\theta_M} \theta^3 \ln(\frac{\theta_M}{\theta})^2 d\theta = 0$$

**4** | P a g e

Coefficient of skew:  $\frac{v_3}{\sigma^3} = 0$ 

Fourth moment: 
$$v_4 = \frac{1}{4\theta_M} \int_{-\theta_M}^{\theta_M} \theta^4 \ln(\frac{\theta_M}{\theta})^2 d\theta = \frac{\theta_M^4}{25}$$

Coefficient of kurtosis:  $\frac{v_4}{\sigma^4} - 3 = 0.24$ 

## 2.2 Comparison between L distribution and Normal distribution

Probability of L distribution and normal distribution when  $\theta$  in the context of  $\sigma$ ;  $2\sigma$ ;  $3\sigma$ , respectively, here  $\sigma$  denote respective standard deviation

L distribution

$$P(-\sigma < \theta < \sigma) = 0.70; \quad P(-2\sigma < \theta < 2\sigma) = 0.94; \quad P(-3\sigma < \theta < 3\sigma) = 1$$

Normal distribution<sup>[1~2]</sup>

$$P(-\sigma \le x \le \sigma) = 0.683; P(-2\sigma \le \theta \le 2\sigma) = 0.955; P(-3\sigma \le \theta \le 3\sigma) = 0.997$$

#### 2.3 Comparison between L distribution and some other well-known distribution

| The classification of distribution function | Mean                      | variance         | 4th central moment | CFK* |
|---------------------------------------------|---------------------------|------------------|--------------------|------|
| (Normal)                                    | μ                         | $\sigma^2$       | 3.0                | 0    |
| (Exponential)                               | 1/λ                       | $1/\lambda^2$    | 9.0                | 6    |
| (Gamma)                                     | $a/\lambda^2$             | $a/\lambda^2$    | 3+6 <i>a</i>       | b/a  |
| **(Uniform)                                 | ( <i>a</i> + <i>b</i> )/2 | $(a-b)^2/12$     | 1.8                | -1.2 |
| (Logarithm)                                 | 0                         | $(\theta_M/3)^2$ | 3.24               | 0.24 |

#### Tab1 difference of some basic parameter for some distribution

\*CFK is abbreviated of Coefficient of Kurtosis. The curve of distribution becomes shape of sunken or hollow and depressed as CFK<-1.2.

## 2.4 Determination numerical value of $\theta = \theta_a(2/e) = \theta_a(74.04\%)$ and Where is $\theta$ as probability =2/e

Define follow

$$\int_{-\theta_M}^{\theta_a} f(\theta) d\theta = \frac{2}{e} + \frac{e-2}{2e} = \frac{1}{2} + \frac{1}{e};$$

Also

Determine  $\theta_a$ , finally by solution,  $\theta_a(2/e) = \pm \theta_M/e$ . Coefficient of skew is zero, imply L symmetric around zero, the coefficient of kurtosis 0.24, standard deviation  $\theta_M/3$ , variance  $(\theta_M/3)^2$ .

## 3. Summaries

 $\int_{-\theta_a}^{-\theta_a} f(\theta) d\theta = \frac{1}{2} - \frac{1}{e}$ 

 $\frac{1}{4\theta_M}\left\{\left[-\theta_a \ln(\frac{\theta_M}{\theta_a})^2 - 2\theta_a\right] + 2\theta_M\right\} = \frac{1}{2} - \frac{1}{e}$ 

 $\frac{1}{4\theta_M} \{ [\theta_a \ln(\frac{-\theta_M}{\theta})^2 + 2\theta_a] + 2\theta_M \} = \frac{1}{2} + \frac{1}{e}$ 

In a word, L distribution with only one parameter  $\theta_M$  is shown as its mean 0, its variance  $(\theta_M/3)^2$ , its standard deviation  $\theta_M/3$ , its fourth moment  $(\theta_M)^4/25$ , third moment zero, the coefficient of kurtosis 0.24, coefficient of skew is zero ,*m*-th moment  $(\theta_M)^m/(m+1)^2$ , in addition, other characteristic, ratio of

 $(\theta_M - \theta_M/e)/\theta_M$  nearly to golden ratio, as well as  $P(-\theta_M/e < \theta < \theta_M/e) = 2/e \approx 74.04\%$ , similarly,  $P(-\theta_M/3 < \theta < \theta_M/3) \approx 70.0\%$ , in summary, continuous random variables of L function concentrically scatter in area near to its mean value than normal function does.

## References

- 1. CHARLES J. STONE. 1996, A Course in Probability and Statistics [M]. Wadsworth Company.
- 2. SUHIR, EPHRAAIM. 1997, Applied probability for engineers and scientists [M].New York: McGraw-Hill.
- 3. w.-1 Wang ., w.-g Wang ., n.-s Deng .,2011, One Candidate Mechanism of Low-Frequency Oscillation- Coriolis Parameter Variance 6, Associated with Latitude, EMS Annual Meeting Vol. Abstracts, 8. EMS2011-67-1, 11th EMS 1 10th **ECAM** or https://www.researchgate.net/publication/298531278\_One\_Candidate\_Mechanism\_of\_Low-Frequ ency Oscillation - Coriolis Parameter Variance Associated with Latitude or http://presentations.copernicus.org/EMS2011-67 presentation.pdf