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ABSTRACT 

 

                           In this study, we looked at parameter estimate based on Pareto distribution’s upper 

record values. For the unknown parameters of this distribution, maximum likelihood and 

approximate Bayes estimators based on upper record values are derived. On the basis of higher 

record values, Lindley’s approximation is utilized to produce approximate Bayes estimators under 

the square error loss function. 
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 1.  Introduction 

The theory of record values and its applications are being utilized extensively in data analysis, 

particularly in the study of the stock market to make predictions about the price of a stock that 

may be greater or lower than the last one. Ahsanullah  (1995)  [1]  and  Arnold  and  Balakrishnan  

(1998)  [2] have provided extensive use of record values for various real life situations. A.M. 

Nigm and H. I. Hamdy 2007 [7] have mentioned that the Pareto Distribution is within the 

category of distributions with decreasing failure rates.  It has been observed by Dupuis,  Tsao 

(2007) [4] and Castillo, Hadi (1997) [5] etc. and many more have been observed that Pareto 

Distribution is widely applicable in the fields of engineering, biology, medicine and others, and 

more over this distribution is quiet helpful for the purpose of modeling and analysis life time data. In 

order to compute the estimates of the unknown parameters of the distribution under the upper 

record values, the study provides Bayes estimates via Lindley’s Approximation approach. Let X1, 

X2, X3, ..., Xn be a series of independent random variables with cdf F (x) and pdf f(x) 

distributions. 

If Yj ≥ Yj−1; j ≥ 1, then Xj is referred to as an upper record and is denoted by XU(j) in the set Yn = 

max(X1, X2, X3, ..., Xn), where n ≥ 1. Let XU(1),XU(2), XU(3), ..., XU(n) be the first upper record values of 

size n resulting from a series of independent and identically pareto variable with the probability 

density function 

      𝑓(𝑥) = 𝛼𝛽𝛼(𝑥 + 𝛽)−(𝛼+1);              𝑥 ≥ 0, 𝛼, 𝛽 > 0                                                   (1.1) 

 

  and cumulative distribution function  

         𝐹(𝑥) = 1 − 𝛽𝛼(𝑥 + 𝛽)−𝛼;               𝑥 ≥ 0, 𝛼, 𝛽 > 0                                                (1.2)  
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Where β is scale and α is shape parameter. 
2.  Estimation of Parameters under Maximum Likelihood Estimation (MLE) 

Suppose that 𝑥 = 𝑥𝑢(1), 𝑥𝑢(2), … . , 𝑥𝑢(𝑛) be the first upper record values of size n from 

Pareto distribution. The likelihood function for observed record 𝑥 given by, 

             𝑙(𝛼, 𝛽|𝑥) = 𝑓(𝑥𝑢(𝑛)) ∏ 𝑓(𝑥𝑢(𝑖))1−𝐹(𝑥𝑢(𝑖))𝑛−1𝑖=0                                                     (2.1) 

 

 Where f(.) and F(.) are given, respectively by (1.1) and (1.2). Substituting f(.) and F(.) in (1.2),             
we get 

 

                    𝑙(𝛼, 𝛽|𝑥) = 𝛼𝑛𝛽𝛼(𝑥𝑢(𝑛) + 𝛽)−𝛼 ∏ (𝑥𝑢(𝑖) + 𝛽)−1𝑛𝑖=1                               (2.2) 

Log likelihood function may be then written as 

                    𝐿(𝛼, 𝛽|𝑥) = 𝑙𝑜𝑔𝑙(𝛼, 𝛽|𝑥) 

i.e,              𝐿(𝛼, 𝛽|𝑥) = 𝑛𝑙𝑜𝑔𝛼 + 𝛼𝑙𝑜𝑔𝛽 − 𝛼(𝑥𝑢(𝑛) + 𝛽) − ∑ 𝑙𝑜𝑔(𝑥𝑢(𝑖) + 𝛽)𝑛𝑖=1    (2.3) 

 

Taking derivatives with respect to α and β of (2.3) and equating them to zero, we obtain the likelihood 
equations for α and β to be 

                   
𝜕𝐿(𝛼,𝛽|𝑥)𝜕𝛼 = 𝑛𝛼 + 𝑙𝑜𝑔𝛽 − 𝑙𝑜𝑔(𝑥𝑢(𝑛) + 𝛽)                                                              (2.4) 

                  
𝜕𝐿(𝛼,𝛽|𝑥)𝜕𝛽 = 𝛼𝛽 + 𝛼(𝑥𝑢(𝑛)+𝛽) − ∑ 1(𝑥𝑢(𝑖)+𝛽)𝑛𝑖=1                                                             (2.5) 

The equations (2.4) and (2.5) cannot solve analytically for α and β. Therefore, we use R software to 
solve these equations and find the MLE’s of the unknown parameters α and β. 

 

3.  Estimation of parameters under Lindley’s Approximation 

Assume the following gamma prior densities for and for model (1.1). 𝜋1(𝛼|𝑝, 𝑞) =  𝑞𝑝𝛤𝑝 𝛼𝑝−1𝑒𝑥𝑝(−𝑞𝛼)                        (𝛼 ≥ 0)                                                           (3.1) 𝜋2(𝛽|𝑟, 𝑠) =  𝑠𝑟𝛤𝑟 𝛽𝑟−1𝑒𝑥𝑝(−𝑠𝛽)                        (𝛽 ≥ 0)                                                           .(3.2) 

The joint prior density of α and β may be written as 

                   𝜋(𝛼, 𝛽) = 𝜋1(𝛼|𝑝, 𝑞)𝜋2(𝛽|𝑟, 𝑠) 

                  𝜋(𝛼, 𝛽) = 𝑞𝑝𝑠𝑟𝛤𝑝𝛤𝑟 𝛼𝑝−1𝛽𝑟−1𝑒𝑥𝑝(−𝑞𝛼 − 𝑠𝛽)                                                            (3.3) 

Based on the likelihood function of the observed sample is same as (2.4) and the joint prior in (3.3),  

the joint posterior density of α and β given the data 

                𝜋∗(𝛼, 𝛽|𝑥) = 𝑙(𝛼,𝛽|𝑥)𝜋(𝛼,𝛽)∫ ∫ 𝑙(𝛼,𝛽|𝑥)𝜋(𝛼,𝛽)𝑑𝛼𝑑𝛽∞0∞0                                                                (3.4) 

Therefore, the Bayes estimate of any function of α and β say (α, β), under square error loss function is 

                 𝑔̃(𝛼, 𝛽) = 𝐸𝛼,𝛽|𝑑𝑎𝑡𝑎[𝑔(𝛼, 𝛽)] = ∫ ∫ 𝑔(𝛼,𝛽)𝑙(𝛼,𝛽|𝑥)𝜋(𝛼,𝛽)𝑑𝛼𝑑𝛽∞0∞0 ∫ ∫ 𝑙(𝛼,𝛽|𝑥)𝜋(𝛼,𝛽)𝑑𝛼𝑑𝛽∞0∞0                          (3.5) 
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Now, we utilize the Lindley’s Approximation technique from the posterior distributions and then 

compute the Bayes Estimator of g (α, β) under the squared error loss (SEL) function. The ratio of two 

integrals provided by (3.5) cannot be achieved in a closed form; therefore, we use Lindley’s 

approximation. By multiplying the likelihood by the joint prior, the equation for the joint posterior up 

to proportionality may be desired as 𝜋∗(𝛼, 𝛽|𝑥) ∝ 𝛼𝑛+𝑝−1𝛽𝑛+𝑟−1 exp[−(𝑞𝛼 + 𝑠𝛽 − 𝛽 log(1 − exp(−𝑥𝑢(𝑛)𝛼 )))] 
                                                              + ∏ 𝑥𝑢(𝑖)𝛼−1exp (−𝑥𝑢(𝑖)𝛼 )1−exp (−𝑥𝑢(𝑖)𝛼 )𝑛−1𝑖=1                                              (3.6) 

The posterior distribution of the supplied Eq. (3.6) cannot be analytically reduced to well-known 

distributions, making it impossible to sample directly using conventional methods. However, the plot 

of the posterior distribution indicates that it is comparable to the normal distribution. The selection of 

the hyper parameters (p, q, r and s) that brings (3.6) close to the proposal distribution. We compute 

the Bayes estimates 

4.  Lindley’s Approximation  

We consider the Lindley’s approximation method to obtain the Bayes estimates of the parameters, 

which includes the posterior expectation is expressible in the form of ratio of integral as follow: 

       𝐼(𝑥) = 𝐸(𝛼, 𝛽|𝑥) = ∫ 𝑢(𝛼,𝛽)𝑒𝐿(𝛼,𝛽)+𝐺(𝛼,𝛽)𝑑(𝛼,𝛽)𝑒𝐿(𝛼,𝛽)+𝐺(𝛼,𝛽)𝑑(𝛼,𝛽)                                      (4.1) 

Where, 

 u(α, β) =is a function of α and β only  

L(α, β) = Log-likelihood function  

G(α, β) = Log of joint prior density According to D.V. Lindley,  

if ML estimates of the parameters are available and n is sufficiently large then the above ratio of the 

integral can be approximated and the approximate Bayes estimator of α under squared error loss 

(SEL) is, 

             𝛼̂𝑆  𝐿 = 𝛼̂ + 0.5[2( 𝑢̂𝛼 𝑝̂𝛽𝜎̂𝛼𝛽 + 2𝑢̂𝛼 𝑝̂𝛽𝜎̂𝛼𝛼)] + 0.5[( 𝑢̂𝛼𝜎̂𝛼𝛽)(𝐿̂𝛽𝛽𝛽𝜎̂𝛼𝛽 + 𝐿̂𝛽𝛼𝛽𝜎̂𝛽𝛼) 

                                                                                  +( 𝑢̂𝛼𝜎̂𝛼𝛼)(𝐿̂𝛽𝛼𝛼𝜎̂𝛽𝛼 + 𝐿̂𝛼𝛼𝛼𝜎̂𝛼𝛼)]                (4.2)                   

and similarly, the Bayes estimates for β under SELF is, 𝛽̂𝑆  𝐿 = 𝛽̂ + 0.5[2( 𝑢̂𝛽 𝑝̂𝛽𝜎̂𝛽𝛽 + 2𝑢̂𝛽  𝑝̂𝛼𝜎̂𝛽𝛼)] + 0.5[( 𝑢̂𝛽𝜎̂𝛽𝛽)(𝐿̂𝛽𝛽𝛽𝜎̂𝛽𝛽 + 𝐿̂𝛽𝛼𝛽𝜎̂𝛽𝛼) 

                                                                                  +( 𝑢̂𝛽𝜎̂𝛼𝛽)(𝐿̂𝛽𝛼𝛼𝜎̂𝛽𝛼 + 𝐿̂𝛼𝛼𝛼𝜎̂𝛼𝛼)]                 (4.3)              

5.  Application to Real Data  

To provide an example of the inferential techniques developed in the sections above. We selected 

actual data that V. Choulakian and M. A. Stephens 2012 [9] had also utilized. The data represent the 

Wheaton River in Carcross, Yukon Territory, Canada, exceedances of flood maxima (in m3/s). The 

statistics are excesses for the years 1958 through 1984. The data are given below 1.7, 2.2, 14.4, 20.6, 

39, 64 Based on these seven upper record values, we compute the approximate MLEs and Bayes 

estimates of α and β using Lindley’s Approximation. Table 1: Estimates of α and β obtained by MLE 
and Lindley’ Approximation 
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Method Parameter Estimates 

MLE α 2.3935 

β 5.6822 

Lindley’s Approximation α 1.5070 

β 1.6915 

 

5.  Conclusion  

In this study, we address the Bayes estimate of the Pareto distribution’s unknown parameters when 

the data are higher record values. Under the suppositions of squared error loss functions, we present 

the Bayes estimators and assume the gamma priors on the unknown parameters. The Bayes estimators 

can be produced via numerical integration; however, they cannot be obtained in explicit forms. 

Because of this, we use Lindley’s Approximation approach. We observe the estimates based on 

Lindey’s are better than Maximum likelihood estimates. 
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