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Abstract 

As an abstraction of the geometrical notion of translation, the first author has already introduced two 

operators T+  and  T- called the intuitionistic fuzzy translation operators on the intuitionistic fuzzy 

sets and studied their properties and investigate the action of these operators on intuitionistic fuzzy 

subgroups of a group in [11]. The concept of intuitionistic M-fuzzy subgroup of a M-group and their 

properties are discussed by Zhan and Tan in [12]. Here in this paper we will study the action of these 

operators on intuitionistic M- fuzzy subgroup of a M- group.  

Keywords: Intuitionistic fuzzy set (IFS), Intuitionistic fuzzy subgroup (IFSG), Intuitionistic M-fuzzy 

subgroup (IMFSG), Translates, M- homomorphism.  

2010 AMS Classification: 03F55, 20A15. 

1. Introduction 

The concept of intuitionistic fuzzy sets was introduced by K.T. Atanassov [1-2] as a 

generalization to the notion of fuzzy sets by L.A. Zadeh [13]. R. Biswas was the first to introduce the 

intuitionistic fuzzification of algebraic structure and developed the concept of intuitionistic fuzzy 

subgroup of a group in [4]. Later on many mathematicians worked in this area and developed the 

theory of intuitionistic fuzzy groups, for example see [3], [5-6], [7] and [10]. In  [12]  J. Zhan and Z. 

Tan has introduced and studied the notion of intuitionistic M-fuzzy subgroup of a M-group which was 

further studied by M.Oqla Massa’deh in [8]. Sharma in [11] has already introduced two translation 

operators in intuitionistic fuzzy sets and studied their effect on intuitionistic fuzzy subgroups of a 

group. Here in this paper, we will study the effect of these two operators on the intuitionistic M-fuzzy 

subgroups of a M-group.  

2. Preliminaries 

    Atanassov introduced the concept of intuitionistic fuzzy set (IFS) defined on a non 

empty set X is an object having the form  A ={< x, A(x), A(x) > : x X}, where A : X  [0,1]  and  

A : X  [0,1] define the degree of membership and degree of non-membership of the element xX 

respectively and for any xX, we have  0  A(x) + A(x)  1.  

http://ijopaar.com/
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Definition (2.1) [4](Intuitionistic fuzzy subgroup)  An IFS A= ( , )A A   of a group G is said to be 

an intuitionistic fuzzy subgroup (IFSG) of G  if  

 

1 1

(i)   ( ) min{ ( ), ( )}    and   ( ) max{ ( ), ( )}

(ii)  ( ) ( )    and    ( ) ( ),  , .

A A A A A A

A A A A

xy x y xy x y

x x x x x y G

     

    

 

   

  

In other words,  An IFS A of X is called an IFSG of G if and only if  

 
1 1( ) min{ ( ), ( )}  and  ( ) max{ ( ), ( )}, , .A A A A A Axy x y xy x y x y G     
      

Definition (2.2) [9] (M-Group) Let G be a group and M be a set of endomorphisms on G, then G is 

called M- Group if for any g∈G, m∈M, ∃ mg∈G such that  m(gh) = (mg)(mh)  ∀g, h∈G, m∈M.  

Example (2.3) Let G = (R - {0},  . ), be the group of non-zero real numbers under multiplication. Let 

M = { f : G  G : f  (x) = x-1 }, the set of endomorphisms. Then G is a M-group.  

Definition (2.4) [9] (M-Subgroup) A subgroup N of a M-group is said to be M-subgroup if       mx 

N  , .x N m M  
 

Example (2.5) Let G = (R - {0},  . ), be a M-group as in Example (2.3). Then H = (Q –{0}, .) is M-

subgroup of M-group G. 

Definition (2.6) [12] (Intuitionistic M-Fuzzy Subgroup)  Let G be a M-group. Then an intuitionistic 

fuzzy subgroup A of G is called an intuitionistic M-fuzzy subgroup (IMFSG)  if                                                   

( ) ( )A Amx x   and ( ) ( ),     ,  .A Amx x x G m M      

Proposition (2.7) [12]   Let A be an IMFSG of M-group G, then for any x,y G, m M, we have 

1 1

( )  ( ( )) min{ ( ), ( )}  and   ( ( )) max{ ( ), ( )}

(ii) ( ) ( )  and  ( ) ( ),  ,  , .

A A A A A A

A A A A

i m xy mx my m xy mx my

mx x mx x x y G m M

     

    

 

    

 

Definition (2.8) [8] (Intuitionistic Normal M-Fuzzy subgroups)  Let G be a M- group and A be an 

IMFSG of G, then A is called an intuitionistic normal M-fuzzy subgroup (INMFSG) if 

      
1 1( ( )) ( )   ( ( )) ( ),  , ,  .A A A Am xyx my and m xyx my x y G m M          

Definition (2.9) [9, 12](M-homomorphism) Let G1  and G2  be two M-groups and  f  be a 

homomorphism from G1  onto  G2. If  f (mx) = m f (x)  1     ,x G and m M  
 
then   f  is called M- 

homomorphism. 

 

3. Translation of intuitionistic M-fuzzy subgroups 

 In this section, we study the action of two operators T+ and T- on intuitionistic M-

fuzzy subgroup of a M-group G. We prove that these operators take on IMFSG to IMFSG and 

INMFSG to INMFSG.  

Definition (3.1) Let A = (A , A) be  an IFS of a M-group G and [0, 1]. We define  
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T+(A)(x) = (T+(A) (x) ,  T+(A) (x)) and   T-(A)(x) = (T-(A) (x),  T-(A) (x)) , where  

T+(A) (x) = min{A(x) + , 1}     ,       T+(A) (x) = max{A(x) -  , 0}  and                                                                  

T-(A) (x) = max{A(x) - , 0}      ,      T-(A) (x) = min{A(x) + , 1},  x G. 

T+(A) and T-(A) are respectively called the - up and - down intuitionistic fuzzy operator of A. 

We shall call T + and T - as the intuitionistic fuzzy operator. 

Results (3.2) The following results can be easily verified from definition                                                                                          

(i) T0+(A) = T0 -(A) = A  (ii) T1 +(A) = 1   (iii) T1 -(A) = 0  

Remark (3.3) If A is an IFS of a M-group G, then both T +(A) and T -(A) are IFS of G. In other 

words  0  T+(A) (x) + T+(A) (x)  1 and 0  T-(A) (x) +  T-(A) (x) 1,  for all xG.   

Theorem (3.4) If A is an intuitionistic M-fuzzy subgroup of a M-group G, then T+(A) and      T-(A) 

are also an intuitionistic M-fuzzy subgroup of G. 

Proof.  Let A = (A ,A) be an IMFSG and α∈[0,1]. Let x, y ∈G, m∈M 

T+(A)(x) = (T+(A)(x),  T+(A) (x)) and T-(A)(mx) = (T-(A)(x) ,  T-(A) (x)) , where  

T+(A)(x) = min{A(x) + , 1},   T+(A)(x) = max{A(x) - , 0}  and  

T-(A)(x) = max{A(x) - , 0},   T-(A) (x) = min{A(x)+ , 1}. 

Now,   
1 1 1

( ) ( )( )( ) ( ( ), ( ))T A T AT A xy xy xy
 

 
 

   , here we have                                         

1 1

1

( )( ) min{ ( ) ,1}

                     min{min{ ( ), ( )} ,1}

                     min{min{ ( ) ,1},{ ( ) ,1}}

                     min{ ( ), ( )}

. .,  ( )( ) min{

T A

A A

A A

T T

T T

A xy xy

x y

x y

x y

i e A xy



 

 

  

  

   

 

 



 



 



 

 

  



 ( )( ), ( )( )}.TA x A y



 

1 1

,  we have

( )( ) max{ ( ) ,0}

                     max{max{ ( ), ( )} ,0}

                    max{max{ ( ) ,0},{ ( ) ,0}}

                    max{ ( ), ( )}

. .,  (

T A

A A

A A

T T

T

Similarly

A xy xy

x y

x y

x y

i e



 



  

  

   

 





 



  

 

  



1)( ) max{ ( )( ), ( )( )}.T TA xy A x A y
 

 
 

 

                                                         

Hence, ( )T A
   is an IFSG of group of G.

Now, ( ) min{ ( ) ,1} min{ ( ) ,1} ( )

Thus, ( ) ( ).

T A A T

T T

mx mx x x

mx x
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Also,  ( ) max{ ( ) ,0} max{ ( ) ,0} ( ).

So, ( ) ( ).

T A A T

T T

mx mx x x

mx x

 

 

     

 

 

 

    


 

Thus, ( )T A
   is an IMFSG of G. 

Similarly, we can prove that  ( )T A
   is an IMFSG of G. 

Remark (3.5)  If  ( )T A
   or  ( )T A

   is an IMFSG of a M-group G  for a particular α [0,1], then it 

cannot be deduced that A is an IMFSG of G.  

Example (3.6) Let H be a M – subgroup of a M-group G and A be an IFS on G defined by 

0.2;   0.8;    
( )     and    ( ) .

0.6;   0.3;   
A A

x H x H
x x

otherwise otherwise
 

  
  
 

         

Take  𝛂 = 𝟎. 𝟖,  we have 

( ) ( )( ) 1    and    ( ) 0 ,     i.e.,  ( ) 1. T A T Ax x x G T A
  

  
 

    
                                                                                 

Clearly, ( )T A
 is an IMFSG of G, however A is not an IMFSG of G. 

Proposition (3.7) Let G be a M-group with identity element e and A be an IMFSG of G. Then the set 

{ :  ( ) ( )  ( ) ( )}A A AG x G x e and x e       is an M-subgroup of G. 

Proof:  Clearly, GA    , for  e  GA.  So, let x , y  GA be any elements, then   

1

1 1

1

( ) min{ ( ), ( )} min{ ( ), ( )} ( ).

But  ( ) ( ) always implies that  ( ) ( ).

Similarly,  we can show that ( ) ( ).

Now, ( ) ( ) ( ),  but ( ) ( ) implies 

A A A A A A

A A A A

A A

A A A A A A

xy x y e e e

e xy xy e

xy e

mx x e e mx

     

   

 

     



 



  

 



  

1

( ) ( ) 

Simliarly, we can show that ( ) ( ).

Thus,  we get  ,   ,  ,  and   M.

Hence  is a M-subgroup of G.

A

A A

A

A

mx e

mx x

xy mx G x y G m

G



 







   

    

Theorem (3.8) Let A be an IFS of a M-group G such that ( )T A
be an IMFSG of G, for some  

[𝟎, 𝟏] with 𝜶 < 𝐦𝐢𝐧{𝟏 − 𝒑, 𝒒}, then A is an IMFSG of G, where  p = max{A(x): x G- AG } and 

q = min{ A(x): x G- AG }. 

Proof: Let ( )T A
be an IMFSG of G for some [0,1]   with 𝜶 < 𝐦𝐢𝐧{𝟏 − 𝒑, 𝒒} for any x ,y ∈G , 

m∈M. We have,  ( ) ( )( )( ) ( ( ), ( )),T A T AT A mx mx mx where
 

  
  

  

( ) ( ) min{ ( ) ,1}  and  ( ) max{ ( ) ,0}.T A A T Amx mx mx mx
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Since  
( )T A

 
 is an IMFSG of G , therefore we have                                                                                               

 

( )
( ) ( ) ( )( ) ( )     and   ( ) ( )   ......................................(*)

A
T A T A T A Tmx x mx x
   

   
   

   

Case I:  
( ) ( )

  ( ) 1   and   ( ) 1.
A A

T Twhen x y
 

 
 

   

( ) ( ) ( ) ( )

,  0 ( ) ( ) 1   ( ) 0. Similarly, we have ( ) 0.
A A A A

T T T TAs x x x y
   

   
   

       

  

( ) ( )
( ) ( ) ( )

( ) ( )

,  ( ) ( ) 1 but ( ) 1 (always)   ( ) 1 and  so,  ( ) 0.

,  we get  ( ) 1 and ( ) 0.

A A
T A T T T A T A

T A T A

Also mx x mx mx mx

Similarly my my

    

 

    

 

    

 

     

 

  

( ) ( )

Now,  ( ) 1                 ( ) 0

min{ ( ) ,1} 1       max{ ( ) ,0} 0

( ) 1                     ( ) 0

( ) 1                      ( ) .

,  we get  (

A A
T T

A A

A A

A A

A

x and x

x and x

x and x

x and x

Similarly y

 

 

   

   

   



 
 

    

    

   
............(1)

) 1     ( )Aand y  




   

  

Since, < min{1- p, q}         < 1- p   and     < q        p < 1-    and   q >                                               

 max{A(x): xG–GA}< 1-     and     min{A(x): xG–GA}> .                                                            

Therefore, from (1), we get  xGA and yGA , but AG is a M-subgroup of G.

1

1

1

1

,   and  ,  where   be any element

( ) ( ) { ( ), ( )} { ( ), ( )}

( ) { ( ), ( )}.

Similarly,  we have  ( ) { ( ), ( )}.

Also,  ( ) ( ) (

A A

A A A A A A

A A A

A A A

A A A

Therefore xy G mx G m M

xy e min e e min x y

xy min x y

xy max x y

mx e

     

  

  

  









  

   

 



  ) ( ) ( ).

,  we can show that ( ) ( ).

Hence  A is an IMFSG of G. 

A A

A A

x mx x

Similarly mx x

 

 

 



                                                                       

Case II:  When  T+(A)(x) < 1  and  T+(A)(y) < 1. 

min {A(x) +  , 1 } < 1  and   min{A(y) +  , 1} < 1   A(x) +  < 1    and  A(y) +  < 1.  

min{A(mx) + , 1} < 1  and   min{A(my) + , 1} < 1   A(mx) +  < 1  and  A(my) +  < 1. 

 ( )As T A
   is a IMFSG of G. Therefore, for any x,y ∈ G,we have 

1 1

( ) ( ) ( ) ( ) ( ) ( )( ) min{ ( ), ( )}  and  ( ) max{ ( ), ( )}........(2)T A T A T A T A T A T Axy x y xy x y
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1

( ) ( ) ( )

1

1 1

1

( )

,  ( ) min{ ( ), ( )}

min{ ( ) ,1} min min{ ( ) ,1},min{ ( ) ,1} min{ ( ) , ( ) }

( ) min{ ( ), ( )}  . .,  ( ) min{ ( ), ( )}.

,  ( )

T A T A T A

A A A A A

A A A A A A

T A

Now xy x y

xy x y x y

xy x y i e xy x y

Also xy

  



  

         

       



  







 





       

    



 

( ) ( )

1

1 1

max{ ( ), ( )}

max{ ( ) ,0} max max{ ( ) ,1},max{ ( ) ,1} max{ ( ) , ( ) }

 ( ) max{ ( ), ( )} ,   . .,  ( ) max{ ( ), ( )}.

Thus A  is an IFSG of G.

T A T A

A A A A A

A A A A A A

x y

xy x y x y

xy x y i e xy x y

 

 

         

       

 



 

       

    

Also, as ( )T A  is an IMFSG so,  ( ) ( ) ( ) ( )( ) ( )  and  ( ) ( ) ,  .T A T A T A T Amx x mx x m M
   

   
   

   
 

min{ ( ) ,1} min{ ( ) ,1} and max{ ( ) ,0} max{ ( ) ,0}

( ) ( )     and    ( ) ( )

( ) ( )   and   ( ) ( ).

Hence  A is an IMFSG of G. 

A A A A

A A A A

A A A A

mx x mx x

mx x mx x

mx x mx x

       

       

   

      

      

  
 

Case III:  When  T+(A)(x) = 1  and  T+(A)(y) < 1.

 

As in case (i), we get  x  GA , so  A(x) = A(e)   and  A(x) = A(e).     

As  ( )T A


 is an IMFSG of G. So, we have  

1

( ) ( ) ( ) ( ) ( )

1

1

1

( ) min{ ( ), ( )} min{1, ( )} ( ).

min{ ( ) ,1} min{ ( ) ,1}

( ) ( )

( ) ( ) min{ ( ),  ( )} min{ ( ),  ( )}.

Similarly, we can show tha

T A T A T A T A T A

A A

A A

A A A A A A

xy x y y y

xy y

xy y

xy y e y x y

    

    

   

   

     

    









  

   

   

   

1t ( ) max{ ( ), ( )}.

Therefore,  A  is an IFSG of G.

A A Axy x y   

  

Moreover, as T+(A)(x) = 1   T+(A)(mx) = 1 as in case (i) and hence ( ) ( ).A Amx x   

,  we can show that ( ) ( ). Hence  A is an IMFSG of G. A ASimilarly mx x   

Proposition(3.9) Let A be an IFS of a M-group G such that ( )T A
  be IMFSG of G, for some 

𝜶[𝟎, 𝟏] with 𝜶 < 𝐦𝐢𝐧{𝟏 − 𝒑, 𝒒}, then A is an IMFSG of G, where  p = max{A(x): x  G- AG },                               

q = min{ A(x): x  G- AG }. 

Proof:  Similar as in proposition (3.8) 

Theorem (3.10)  If A be an INMFSG of M-group G if and only if ( )T A
  and ( )T A

   are INFMSG 

of G for 𝛼 ∈ [0,1]. 

Proof: Firstly, let A be an INMFSG of a M-group G and  α ∈ [0,1] be any real number. Then  

 
1 1( ( )) ( )      ( ( )) ( )  , ,  .A A A Am xyx my and m xyx my x y G m M        

                                                

 have already proved that ( )  and   ( ) are IMFSGs of G ( See Theorem (3.4))We T A T A
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1 1

1

( ) ( )

1

( ) ( )

( ( )) ( )       min{ ( ( )) ,1} min{ ( ) ,1}

. .,   ( ( )) ( ).

Similarly, we can show that ( ( )) ( ).

A A A A

T A T A

T A T A

m xyx my m xyx my

i e m xyx my

m xyx my

 

 

     

 

 

 

 

 





    




                                                              

Hence, ( )T A
  is also an INMFSG of G.

 
Conversely, let   ( )T A

   and ( )T A
   are INMFSG of G for [0,1]   

Take  𝛼 = 0 , we get  
0 0

( ) ( ).T A A T A    

Hence, A is an INMFSG of G. 

4. M- homomorphism of an intuitionistic M-fuzzy subgroups  

Lemma (4.1)   Let  f  : X  Y be a mapping and [0,1] be any real number. If A and B be any IFSs 

on X and Y respectively, then 

 
 

1 1( )    ( (B)) (B) ;

( )  ( (A)) (A) .

i f T T f

ii f T T f

 

 

 

 

 




 

 

 

1 1

1

1 1

1

1

( (B)) ( (B))

(B) B( (B))

(B) (B)

( (B))

Proof. ( ) Now,  ( (B))( ) ( ),  ( ) ,  where 

( ) ( ( )) min{ ( ( )) ,  1}

                   min{ ( ) ,  1} = ( ) and

( )

f T f T

Tf T

f T f

Tf T

i f T x x x

x f x f x

x x

x

 







  

   

  

 

 
 




 







 

  

 



 

 

1 1

(B) B

(B) (B)

1 1

( ( )) Max{ ( ( )) ,  0}

                  max{ ( ) ,  0} = ( ).

Thus,  ( (B)) (B) .

f T f

f x f x

x x

f T T f



 

 

   


 

 

 

 



 

 

  

( (A)) ( (A))

( (A)) (A)

( ) Now,  ( (A))( ) ( ),  ( ) ,  where 

( ) { ( ) :  ( ) }

                 min{ ( ) ,  1}: ( )

                  = min sup ( ) : ( ) ,  1

                

f T f T

f T T

A

A

ii f T y y y

y sup x f x y

sup x f x y

x f x y

 

 

  

 

 

 

 

 

 

 

  

 

  

 

 

(A)

(A)

  = min sup ( ) : ( ) ,  1

                  = min ( ) ,  1

                  = ( ). 

A

f

T f

x f x y

y

y


 

 




 



 

Theorem (4.2) Let G1 and G2  be two M-groups and let  f : G1  G2  be a M – homomorphism. Let B 

be an IFS on G2 such that (B)T is an IMFSG of G2, then 1( (B))f T



 is an IMFSG of G1. 

Proof: As we have already proved that  1 1( (B)) (B)f T T f 

 

  . So, we will prove that  

 1(B)T f



  is an IMFSG of G1. Since   1 1

1

( ( ) ( ( )
(B) ( ) ( ( ), ( ))

T f B T f B
T f x x x

 
   

 



   

1 1 1 1( ( ) ( ) ( ( ) ( )
( ) min{ ( ) ,1}  and  ( ) max{ ( ) ,0}.

T f B f B T f B f B
x x x x
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Let x, y  G1 and m  M  be any elements, then

 

 

 

1 1

1 1

( (B)) (B)

1 1

B B

1

B

B

( ) min{ ( ) ,  1}

                         = min{ ( ( )) ,  1}= min{ ( ( )( ( )) ) ,  1}

                        = ( ( )( ( )) )

                        min{ ( (

T f f

T

T

xy xy

f xy f x f y

f x f y

f x







  

   





 






 

 



 

 


 

   1 1

1 1

B

(B) (B)

( (B)) ( (B))

)),  ( ( ))}

                        = min{ ( ),  ( )}

                        = min{ ( ),  ( )}.

T

f T f T

T f T f

f y

x y

x y



 

 



 

 



 
 

 
 

1 1 1

1 1 1

1

( (B)) ( (B)) ( (B))

1

( (B)) ( (B)) ( (B))

Thus,  ( ) min{ ( ),  ( )}.

Similarly, we  can show that ( ) max{ ( ),  ( )}.

T f T f T f

T f T f T f

xy x y

xy x y

  

  

  

  

  
  

  
  









1 1( (B)) (B)

B

B

Further,  ( ) min{ ( ) ,  1}

                                    min{ ( ( ) ,  1} 

                                     = min{ ( ( ) ,  1}

                                     = 

T f f
mx mx

f mx

mf x



  

 

 

 


 

 



 

 

 1

1

B

B

(B)

( (B))

(

( ( ))

                                    ( ( )) 

                                    = ( )

                                    = ( ) [Using  lemma  (4.1)( )]

Thus,  

T

T

f T

T f

T f

mf x

f x

x

x i



































1 1(B)) ( (B))
( ) ( ).

T f
mx x



 




 

1
.

Similarly,  we  can show that ( ) ( ).1 1( (B)) ( (B))

1 1
Thus,  ( (B)) and hence ( (B)) is an IFMSG of G

mx x
T f T f

T f f T

 
 

 

 
 

 
 

 

Theorem (4.3) Let G1 and G2  be two M-groups and let  f  : G1  G2 be a M-homomorphism.  Let A 

be an IFS on G1 such that (A)T is an IMFSG of G1, then ( (A))f T  is an IMFSG of G2.  

Proof: As we have already proved that  ( (A)) (A) .f T T f    

Now, we show that  (A)T f
is an IMFS(G2). Let x*, y* G2, and mM be any elements, then ’s  

x, y G1 such that   f (x) = x* ,  f (y) = y*. Now 
   

1 1
( (A)) ( ( ), ( ))

(A) (A)
T f xy xy

T f T f
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1 1
( ) min{ ( ) ,  1}

(A)(A)

1
                                 = min sup{ ( ) :   ( ) *, ( ) *} ,  1A

1
                                 = min sup{ ( ) : ( ) *, ( ) *},  1A

                  

xy xy
fT f

xy f x x f y y

xy f x x f y y

  


 

 

 
 




  


  

 

    

    

1
               = sup ( ) : ( ) *, ( ) *

(A)

                               sup { ( ), ( )} :  ( ) *, ( ) *
A A

                                = min sup{ ( ), ( )} : ( ) *, ( ) *
A A

  

xy f x x f y y
T

min x y f x x f y y
T T

x y f x x f y y
T T




 
 

 
 


 



  
 

 
 

    

      

      

                          = min { ( ) : ( ) *}, { ( ) : ( ) *} .
A A

1
,  ( ) min ( ), ( ) .

(A) (A) (A)

1
Similarly, we can show that ( ) max ( ), ( ) .

(A) (A) (A)

sup x f x x sup y f y y
T T

Thus xy x y
T f T f T f

xy x y
T f T f T f

 
 

  
  

  
  

 
 




  




  

 

 

 

 

(A)(A)

A

A

A

( ) min{ ( *) ,  1}

                     = min sup{ ( ) :   ( ) *} ,  1

                    = min sup{ ( ) :   ( ) *},  1

                    = sup min{ ( ) ,1}:  ( ) *

         

fT f
mx mx

mx f mx mx

mx f mx mx

mx f mx mx


  

 

 

 


 

 

 

 

  

  
 

A

A

( (A)) (A)

          = sup ( ) :  ( ) *

                  sup ( ) : ( ) *

                   = ( *) ( *).

T

T

f T T f

mx f mx mx

x f x x

x x





 





 





 



 



 

   

   

 

(A) (A)

(A) (A)

2

,  ( *) ( *).

Similarly, we can show that ( *) ( *).

Thus,  (A)  and hence  ( (A)) is an IMFSG on G .

T f T f

T f T f

Thus mx x

mx x

T f f T

 

 

 

 

 

 

 

 





 

5. Conclusions 

                  In this paper, we have investigated the effect on the IMFSG of a M-group G under the two 

translation operators and concluded that it remains invariant under the two translation operators. We 

have also observed the effect of translation of IMFSG of M-group G under M- homomorphism. 
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