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Abstract 

The two statistical representations, the Eulerian-Eulerian (EE) and Lagrangian-Eulerian (LE) 

representations are obtained in the framework of the probability density function (p.d.f.) formalism 

for the multiphase flow motions. The consistency relationships among fundamental statistical 

quantities in the EE and LE representations are obtained. The fundamental quantities in these 

statistical representations show a relationship to each other under conditions of spatial homogeneity. 

The transport equations for the probability densities in each statistical representation are obtained. 

The governing equations for the mean mass, mean momentum and second moment of velocity with 

respect to these two representations are derived from these transport equations. Particularly, for the 

EE representation, the p.d.f. formalism is shown to naturally lead to the generally used ensemble 

averaged equations for two-phase flow motions. The Galilean-invariant combinations of unclosed 

terms in the governing equations which need to be modelled are defined. The correspondence between 

unclosed terms in each statistical representation is obtained. The Hybrid EE-LE computations can 

benefit from this correspondence, which serves in consistently for inter-transferring the information. 

This analysis also serves as a guiding frame work for direct numerical simulations of two-phase flows 

that was avoided to measure the unclosed terms in the governing equations in these two statistical 

representations. Also, the advantages and limitations of these statistical representations are defined. 

Keywords: P. D. F., Two Phase, Motion. 

1. Introduction 

In classical field theory the Lagrangian approach of the flow field is the way of 

analyzing the fluid motion where the analyst follows an individual fluid particle as it moves through 

space and time. By plotting the position of an individual particle through time, we can analyze 

the path of the particle. Whereas in the Eulerian approach of the flow field is a way of analyzing the 

fluid motion that focuses on specific locations in the space through which the fluid flows as time 

passes. The Lagrangian and Eulerian specifications of the flow field are sometimes denoted as the 

Lagrangian and Eulerian frame of reference. However, in general both the Lagrangian and Eulerian 

specification of the flow field can be applied in any observer's frame of reference and in 

any coordinate system used within the chosen frame of reference. In the Eulerian specification of 

a field, it is represented as a function of position x and time t. For example, the flow velocity is 

represented by a function v=v(x (t), t) = v(x, t). On the other hand, in the Lagrangian specification, 

individual fluid particles are followed through time. The fluid particles are labeled by some time 

independent vector field x0. Here x0 can be taken as the center of mass of the particle at some initial 

time t0. 

The statistical representations of two phase flows are generally classified as Eulerian–

Eulerian (EE) or Lagrangian–Eulerian (LE) approaches depending on the reference frames underlying 

their formulation. The EE statistical representation means a statistical approach where both the 

continuous and dispersed phases are described in a common Eulerian reference frame as Eulerian 

random fields. The LE statistical representation is a statistical approach that represents the dispersed 

phase in a Lagrangian frame by a number density based on the location of dispersed phase elements 

(DPE) centers [1]. 

The EE and LE statistical representations are essentially the description of a two 

phase flow in two reference frames, it is natural to expect that these representations are related. A 

major challenge in describing the two phase flows, therefore, is to establish the precise relationship 
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between these two modelling approaches. Now, on taking the conditions under which the said 

relationship holds and the conditions under which they do not need to be clearly established. By 

establishing the suitable form of the relationship between the two statistical representations has been 

given some usable conclusions. In 1998, Subramaniam et al. [6] had given the concept that 

computations of some two phase applications such as fuel sprays can potentially benefit by using the 

EE modelling approach in the near-nozzle region and the LE approach in the dispersed spray region. 

This can be shown by figure-1 which shows a schematic illustration of EE-field, LE-field and a 

handover from an EE-representation to a LE-representation in the spray [1]. 

 

 

Figure-1.  

(Schematic representations of a typical spray indicating the EE-region, LE-region and a handover 

between the EE and the LE descriptions. This handover requires consistency conditions to be satisfied 

between the two statistical representations at the common boundary of the two regions [1]) 

In the EE approach, the two phase flow field is represented as a random field while in 

the LE approach the dispersed phase is represented as a marked point process imbedded in a carrier 

flow. The related fundamental events and their corresponding probabilities associated with the two 

phase flow in the EE and LE framework have been discussed in this analysis. Now, the 

representations in both ways are as follows. 

1.2. Random Field Representation 

Let us consider a realization of a two phase flow with two distinct thermodynamic 

phases i.e. a carrier phase and a dispersed phase. Furthermore the term ‘two phase flow’ will be taken 

as an isothermal two phase flow without any reactions. Now each realization can be taken as an 

element of some sample space D that is the space of all possible real events. In a single realization and 

at a single space-time location, the phases are considered by using an indicator function Iα (x, t) for the 

αth phase and will be defined as:  

Iα (x, t) =1, if x is in phase α at time t; 

                  =0, if x is not in phase α at time t. 

In two phase flows, the phase indicator functions satisfy the relation 

∑ 𝐼𝛼 (𝑥, 𝑡) = 1

𝛼={𝑐,𝑑}

.                                                                                                              (1) 

Where c represents the carrier phase and d represents the dispersed phase, for all the values (x, t). The 

instantaneous two phase velocity field U(x, t), which is defined in both phases, is a vector field that is 

defined at each point x in the flow domain in physical space D. The schematic illustrations of the 

sample space with realizations are shown by the figure-2. 
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Figure-2. 

(Schematic representation of the sample space D of all possible realizations of a two phase flow from 

which three realizations {a1, a2, a3} are given. The indicator function Iα (x, t) at a point (x, t), where  

α = {c, d}, as discussed in theory is shown for each of the three realizations. Also the primitive 

variables u for velocity and P for pressure at the DPE surface and in the bulk are shown by [u, P,…]s 

and [u, P, …]b respectively [1]). 

The term ρ(x, t) is the thermodynamic mass density function and is defined in both 

the phases. It has been considered that the density difference between the two phases is sufficiently 

large so that the density field can be used to distinguish between the two phases and the characteristic 

length scale of the interface over which this density change occurs is so small that in a continuum 

description the density changes discontinuously at the interface. But the phases are distinguished by 

the indicator function only then no information on shape or number of dispersed phase elements is 

available in this approach. Now the different events can be used to characterize the state of a two 

phase flow at a single space-time location (x, t), and each leads to different probabilities and p.d.f.’s. 

A complete Eulerian single-point p.d.f. description of the two phase flow will need the knowledge of 

the event i.e. 

E1 = [U ∈  (u, u + δu), if (x, t) = 1]                                                                         (2) 

Which is the event corresponding to the joint occurrence of U in the range (u, u + δu) at any point x 

and the fluid phase will present at the same point. Here u is the sample space variable corresponding 

to the random variable U. It will be noted that Ic (x, t) = 1 automatically precludes the occurrence of 

the dispersed phase at that same point i.e., Id (x, t) = 0 at the same point x. Now for the joint event E1, 

the two marginal events are 

E2 = [U(x, t) ∈  (u, u + δu)]                                                                                     (3) 

E3 (α) = [Iα (x, t) = 1]                                                                                              (4) 

Where E2 is the event that U(x, t) belongs to (u, u + δu) without concern for whether the phase α is 

located at x, while E3 (α) is the event that phase α exists at x. The two conditional events are also 

useful and important is given by 

E4 = [U(x, t) ∈  (u, u + δu)|Iα = 1]                                                                             (5) 

E5 = [Iα (x, t) = 1|U = u]                                                                                           (6) 

Where E4 is the event that U(x, t) belongs to (u, u +δu) conditional on the presence of phase α at a 

point x, while E5 is the event that the location x is occupied by the phase α with respect to condition 

on U = u at the same location. Let the Eulerian p.d.f. of U be denoted as fU(u; x, t), where x and t are 

parameter space variables. The probabilities corresponding to each of the above events are given by 
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P[E2] = P[U(x, t) ∈  (u, u + δu)] = fU(u; x, t) δu                                                          (7) 

P[E5] = P[Iα (x, t) = 1|U = u] = Pα(x, t|u)                                                                    (8) 

P[E1] = P[Iα (x, t) = 1|U = u] P[U(x, t) ∈  (u, u + δu)] = Pα (x, t|u) fU(u; x, t) δu                     (9) 

P[E3 (β)] =P[Iα = 1|U = u] fU(u) δu = Pα fU(u) δu = Aα (x, t)                                                    (10) 

P[E4] = P[U(x, t) ∈  (u, u + δu)|Iα = 1] =Pα fU(u; x, t) Aα(x, t) δu,                                            (11) 

Here Pα (x, t|u) is a phase probability function. Also, Aα(x, t) is the volume fraction at (x, t). The 

probability P[E3 (α)] defines a probability field Aα(x, t) is given as: 

Aα (x, t) ≡ P[Iα (x, t) = 1]                                                                                           (12) 

Here Aα (x, t) is not a probability density function in x. It is a probability mass function in Iα that takes 

values {0, 1}. But  fU is a p.d.f. then it has to satisfy the condition of normalization i.e., 

∫ 𝑓𝑈(𝑢;  𝑥, 𝑡)  𝛿𝑢 =  1.                                                                                                     (13) 

Also, let the probability P[E4] be denoted by fU|Iα 𝛿u, so that the Eulerian p.d.f. of velocity 

conditioned on the presence of phase α at x, fU|Iα is given as: 

𝑓𝑈|𝐼𝛼 =
𝑃𝛼𝑓𝑈(𝑢)

𝐴𝛼(𝑥, 𝑡)
                                                                                                                             (14) 

The phase probability function Pα and the p.d.f. of instantaneous two phase velocity fU can be written 

in terms of the volume fraction field Aα and the phasic velocity p.d.f. fU|Iα as follows: 

𝑃𝑓(𝑥, 𝑡|𝑢) =
𝐴𝑐  (𝑥, 𝑡)𝑓𝑈|𝐼𝑐

 𝐴𝑐  (𝑥, 𝑡)𝑓𝑈|𝐼𝑐
+ 𝐴𝑑  (𝑥, 𝑡)𝑓𝑈|𝐼𝑑

 
                                                                            (15) 

 

𝑓𝑈(𝑢;  𝑥, 𝑡) = 𝐴𝑐  (𝑥, 𝑡)𝑓𝑈|𝐼𝑐
+ 𝐴𝑑  (𝑥, 𝑡)𝑓𝑈|𝐼𝑑

                                                                           (16) 

Hence these equations are sufficient for a complete single point description of a two phase 

flow motion.  

1.3. Point Process Representation 

In 1958, Williams et al., had given LE description of a two-phase flow [7]. The spray 

equation, which is the evolution equation of the d.d.f., can be accurately derived by starting from the 

Lagrangian evolution equations of droplet position, velocity and radius [3], [4]. But the d.d.f. was 

initially started to describe a fuel spray in internal combustion engines and hence the name ‘droplet’ 

distributions function was generated. It can be used to describe any two phase flow where the 

dispersed phase can be modelled as a collection of discrete distinct elements. Let us consider the 

DPEs to be droplets, but the discussion is equally valid for other DPEs. Also let us consider a two 

phase flow in a finite flow domain D in physical space as a collection of droplets. It is assumed that 

one can associate a characteristic length scale with each droplet that is the radius in the case of 

spherical droplets. If the droplet is non-spherical, then we will use the radius of an equivalent sphere 

that has the same volume as the non spherical droplet. We could also use the volume of the droplet 

directly as a phase space variable. However, either choice does not inherently alter the derivation of 

the spray equation nor does it provide any further insight into the nature of the unclosed terms in the 

spray equation and the moment equations derived thereof. Thus, we retain the radius as the 

characteristic length scale for the size phase space [5].  

At time t the total number of droplets n(t ) is a non-negative integer valued random 

variable that is finite with probability 1. The ith DPE is characterized by its position vector xi(t ) which 

is defined as the centre of mass of the droplet, its velocity vector vi(t ) and its radius ri(t). The position, 

velocity and radius of a droplet are called the droplet properties and the droplet property vector 

associated with each droplet is a seven-dimensional random vector in this representation. Any other 

additional droplet properties may be included as required but they do not fundamentally alter the 
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formulation other than increasing the dimension of the space of droplet properties. The properties 

associated with the ith droplet given by the following equations: 

𝑑𝑥𝑖

𝑑𝑡
= 𝑣𝑖,

𝑑𝑣𝑖

𝑑𝑡
= 𝑎𝑖  ,

𝑑𝑟𝑖

𝑑𝑡
= 𝛿𝑟𝑖                                                                                            (17) 

Where ai is the acceleration experienced by the droplet, and 𝛿𝑟𝑖 is the rate of radius change due to 

vaporization or due to other reasons. This initial physical description for the LE approach assumes 

that the velocity field inside the droplet is uniform, and hence the motion of the ith droplet can be 

described by the motion of its centre of mass xi. The ensemble of droplets is characterized in the 

seven-dimensional position velocity radius space (x, v, r) by its fine grained 

density function γ, which is defined as 

𝛾(𝑥, 𝑣, 𝑟, 𝑡) = ∑ 𝛾𝑖

𝑛

𝑖=1

= ∑ 𝛿(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 𝛿(𝑣 − 𝑣𝑖) 𝛿(𝑟 − 𝑟𝑖)                                         (18) 

Here (xi,vi,ri ) are the Lagrangian coordinates of the ith droplet whereas (x, v, r) are the 

sample-space coordinates. The function γ represents the density of droplets in a seven-dimensional (x, 

v, r) space. The summation of the product of delta functions in the above equation represents a single 

realization of the two phase flow. So the above summation represents a realization of the two phase 

flow in which the ith DPE whose centre of mass xi is at location x in position phase space, whose 

centre of mass velocity vi is at location v in velocity phase space and whose radius ri is at location r in 

radius phase space. If the number of droplets in any region B+ in ( x, v, r+) space (since droplets with 

only non-zero radius belong to the spray system, if we denote r+ to be the positive r-axis (r > 0), then 

it is suitable to integrate over regions only in ( x, v, r+ ) space) is denoted by n(B+; t ), it is obtained by 

integrating  γ over the region B+ such that 

n (B+; t) = [∫ 𝛾(𝑥, 𝑣, 𝑟, 𝑡)  𝑑𝑥 𝑑𝑣 𝑑𝑟]𝐵+                                                                                          (19) 

But γ is composed of delta functions it is not a smooth function in (x, v, r) space. The statistical 

description of a spray in terms of γ contains far more information than that is necessary for the 

calculations. So in order to find the information concerning the average properties of the spray, it is 

advantageous to consider the whole total average of γ. This average of γ is denoted by           (x, v, r, t) 

and it defines the d.d.f. as given 

γa (x, v, r, t) ≡⟨𝛾(𝑥, 𝑣, 𝑟, 𝑡)⟩ = ⟨∑ 𝛿(𝑥 − 𝑥𝑖)𝑛
𝑖=1  𝛿(𝑣 − 𝑣𝑖) 𝛿(𝑟 − 𝑟𝑖)⟩                               (20) 

The expectation ⟨ . ⟩ in the above represents a whole total average of possibly infinite realizations of 

the two phase flow. The details on the use of the delta function to represent a realization of a single 

phase flow and its whole total average can be found. It is important to note that the expectation 

operator cannot be brought inside the summation for a general spray; if done, and then the conclusions 

of such an operation needs to understand [3]. 

The expected number of droplets n(B+; t ) in a region B+ of (x, v, r+) space is given by 

𝑛(𝐵+;  𝑡 ) = ∫ γ
a

𝐵+

(𝑥, 𝑣, 𝑟, 𝑡)𝑑𝑥 𝑑𝑣 𝑑𝑟                                                                              (21) 

The expected number of spray droplets ⟨𝑛(𝑡)⟩ at time t over the entire space (x, v, r+) is given by 

⟨𝑛(𝑡)⟩ = ∫ γ
a

(𝑥,𝑣,𝑟+)

(𝑥, 𝑣, 𝑟, 𝑡)𝑑𝑥 𝑑𝑣 𝑑𝑟                                                                             (22) 

If the droplet distribution function is integrated over only (v, r+) space, the density of the expected 

number of spray droplets ne(x; t) can be finding as follows: 

𝑛𝑒(𝑥;  𝑡) = ∫ γ
a

(𝑣,𝑟+)

(𝑥, 𝑣, 𝑟, 𝑡) 𝑑𝑣 𝑑𝑟                                                                                 (23) 
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The joint p.d.f. i.e., j.p.d.f. for a p.d.f. conditional on x of velocity and radius can be taken as: 

𝛾𝑣𝑟
𝑥 (𝑣, 𝑟; 𝑥; 𝑡) =

𝛾𝑎(𝑥, 𝑣, 𝑟, 𝑡)

𝑛𝑒(𝑥;  𝑡)
                                                                                                (24) 

The 3-dimensional graphical representation of a j.p.d.f. is shown by the figure as follows: 

 

Figure-3. 

Let us take, 

P[n(t)=k] = pk , γ
k denotes the density of expected number of droplets in the phase space with respect 

to the condition that the event n(t)=k  and 𝛾1𝑠
𝑘 (x, v, r; t) is the single-particle density of identically 

distributed considered droplets then we have 

γ
𝑎

(𝑥, 𝑣, 𝑟, 𝑡) = ∑ 𝑝𝑘𝛾𝑘  (𝑥, 𝑣, 𝑟; 𝑡)

k≥1

= ∑ 𝑘 𝑝𝑘𝛾1𝑠
𝑘  (𝑥, 𝑣, 𝑟; 𝑡)

k≥1

                                                (25) 

Hence we have the relation as given 

𝛾𝑣𝑟
𝑥 (𝑣, 𝑟; 𝑥; 𝑡) =

∑ 𝑘 𝑝𝑘𝛾1𝑠
𝑘  (𝑥, 𝑣, 𝑟; 𝑡)k≥1

∑  𝑘 𝑝𝑘𝛾1𝑠
𝑘  (𝑥; 𝑡)k≥1

                                                                                    (26) 

2. Graphical Representations of Some P.D.F. 

 

 

Figure-4. 

(The graph between the variable x and P.D.F. f(x) for a =1, 2 and 5  
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𝑃. 𝐷. 𝐹. = 𝑓(𝑥) = √
2

𝜋
  

𝑥2𝑒−𝑥2/2𝑎2

𝑎3  ) 

 

 

Figure-5. 

(The graph between the variable x and Commulative P.D.F. f(x) for a =1, 2 and 5 

 

𝐶. 𝑃. 𝐷. 𝐹. = 𝑓(𝑥) = erf (
𝑥

𝑎√2
) − √

2

𝜋
  

𝑥2𝑒−𝑥2/2𝑎2

𝑎
 ) 

 

 

Figure-6. 

(The speed probability density functions of the speeds of a few noble gases at a temperature of 

298.15 K (25 °C). The y-axis is in s/m so that the area under any section of the curve that represents 

the probability of the speed being in that range is dimensionless) 
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Figure-7. 

(The P.D.F. of speeds for a certain gas at a certain temperature, such as nitrogen at 298 K. The speed 

at the top of the curve is called the most probable speed because the largest number of molecules has 

that speed) [2] 

3. Conclusions 

The two distinctly different statistical representations, namely the Eulerian–Eulerian 

and Lagrangian–Eulerian statistical representations, exist for a two-phase flow. It is clearly shown that 

the EE and LE probabilistic representations of two phase flow carry a complicated relationship with 

each other, which is different from simpler relationship between the Eulerian and Lagrangian 

descriptions in single phase flow. The fundamental events and corresponding probabilities associated 

with a two phase flow in the EE statistical representation have been founded. The governing equations 

for the mean mass, mean momentum and second moment that are derived from the given equation for 

the EE mass density are shown to be identical to widely used whole total averaged equations for two 

phase flows. The fundamental to the LE statistical representation is the droplet distribution function 

(d.d.f.) whose evolution equation has been accurately derived with the help of the theory of point 

processes. The transport equation forms the basis for the derivation of mean mass, mean momentum 

and second moment equations for the dispersed phase in the LE representation. The consistency 

conditions are established between the fundamental quantities in the EE and the LE statistical 

representations. By comparing unclosed terms in the governing equations for the mean mass, mean 

momentum and second moment in each statistical representation, correspondence between the 

unclosed terms is established. The comparison between the two statistical representations reveals that 

the information content in the two approaches is indeed different.  
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