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Abstract 

The concept of intuitionistic fuzzy G-modules and its properties including representation, reducibility 

and injectivity are already defined by the author et al. In this paper, we extend this idea to define 

semi-simplicity of intuitionistic fuzzy G-modules. The existence of a semi-simple intuitionistic fuzzy G-

module for every finite dimensional G-module is proved and the relationships of semi-simplicity with 

other properties of intuitionistic fuzzy G-modules are also discussed.  
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1. Introduction 

As a generalization of L.A. Zadeh’s [13] fuzzy set, the concept of an intuitionistic 

fuzzy set was introduced by K.T. Atanassov [1], [2]. Applying this concept to algebra, R. Biswas [3] 

introduced the concept of intuitionistic fuzzy subgroups of a group and studied some of its properties. 

Later on many mathematicians worked on it and introduced the notion of intuitionistic fuzzy subrings, 

intuitionistic fuzzy modules etc. [6], [7] and [8]. Intuitionistic fuzzification of G-modules are made by 

the author et al. in [9]. Many properties like representation, complete reducibility and injectivity of 

intuitionistic fuzzy G-modules are discussed in [10], [11] and [12] respectively.     

    In this paper, we define semi-simplicity of intuitionistic fuzzy G-modules using 

direct sum of intuitionistic fuzzy G-modules. We prove the existence of semi-simple intuitionistic 

fuzzy G-modules on every finite dimensional G-module. We also obtain the relationship between 

complete reducibility and semi-simplicity of intuitionistic fuzzy G-modules and relate intuitionistic 

fuzzy injectivity with intuitionistic fuzzy semi-simplicity. 

2. Preliminaries 

Throughout this article, concepts and notation related with G-modules are mainly 

taken from [4], [5] and concepts and notation related with intuitionistic fuzzy G-modules are taken 

from [9], [10], [11] and [12].      

                          Let G be a group and M be a vector space over a field K. Then M is called a            

G-module if for every gG and mM,  a product (called the action of G on M), gmM satisfies the 

following axioms 

i) 1G m = m, mM  (1G being the identity of G) 

ii) (gh)m = g(hm),  mM, g, hG 
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iii) g(k1m1 + k2m2) = k1(gm1) + k2(gm2),  k1, k2K; m1, m2M and gG. 

                          A subspace of M, which itself is a G-module with the same action is called              

G-submodule of M. It can be seen that the intersection of G-submodules is again a G-submodule.  A 

non-zero G-module M is irreducible if the only G-submodules of M are M and {0}. Otherwise it is 

reducible. A non-zero G-module M is completely reducible if for every G-submodule N of M, there 

exists a  G-submodule N* of M such that M = N  N*. It is well known that G-submodules of 

completely reducible G-modules are completely   reducible. For G-modules M and M*, M is          

M*- injective if, for every submodule N* of M*, any homomorphism φ from N* to M can be 

extended as a homomorphism ψ from M* to M. A G-module M is semi simple if there exists a family 

of irreducible G-submodules Mi such that
1

n

i
i

M M


 .  It is evident that completely reducible G-

modules are semi simple. 

  Let G be a group and M be a G-module over K, which is a subfield of C. Then an 

intuitionistic fuzzy G-module on M is an intuitionistic fuzzy set A = (A , A ) of M such that 

following  conditions are satisfied 

(i) µA(ax + by) ≥ µA(x)  µA(y) and vA (ax + by) ≤  vA(x)  vA(y),  a, bK  and  x, yM and                                                                         

(ii) µA (gm) ≥ µA (m)  and  vA (gm) ≤  vA(m),  g  G ;  m M. 

The standard intuitionistic fuzzy intersection of finite number of intuitionistic fuzzy 

G-modules is again an intuitionistic fuzzy G-module, while standard union and compliment need not 

be so. If 
1

n

i
i

M M


   is a G-module and Ai is an intuitionistic fuzzy G-module on Mi  i, then  
1

n

i
i

A

  

is defined by 

1 1

1
( ) ( ),  ( ) ,  where n n

i i
i i

n

i
i A A

A x x x 
 

  

  
         

 

   
1 1

.

1

( ) min ( ) : 1,  2,....,  and ( ) max ( ) : 1,  2,...., ,  ,n n
i i

i i
i i

n

A i A i i i i
A A

i

x x i n x x i n x x M x M   
 
 



       

is an intuitionistic fuzzy G-module on M called the direct sum of intuitionistic fuzzy G-modules Ai, 

i =1,2,…,n. An intuitionistic fuzzy G-module A on M is completely reducible if                 

(i)  M is completely reducible,   

(ii) M has at least one proper G-submodule and 

(iii) Corresponding to any proper decomposition 1 2 ,M M M  there exists intuitionistic fuzzy G-

modules Ai  on Mi, i = 1, 2, such that  1 2A A A  with  (A1)   (A2) [ i.e., set of double pinned 

flags for the intuitionistic fuzzy G-module A1   set of double pinned flags for the intuitionistic fuzzy 

G-module A2 ].  
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Let M and M be G-modules. Let A = ( , )A A   be any intuitionistic fuzzy G-module 

on M and B = ( , )B B  be any intuitionistic fuzzy G-module on M. Then A is B-injective if 

(i) M is M- injective. 

(ii)  µB(m)   µA((m))  and B(m)  A((m)),   Hom (M, M) and m M .       

 

3.  Semi–simple intuitionistic fuzzy G-modules  

Definition (3.1) An intuitionistic fuzzy G-module A on M is said to be semi-simple if M is semi-

simple G-module with decomposition 
1

n

i
i

M M


  and  
1

n

i
i

A A


  , where Ai  is an intuitionistic fuzzy 

G-module on Mi ,  i. 

Example (3.2) Let  G = {1, -1} and  M = Q( 2  ) over Q . Then M is semi-simple G-module with        

M = Q( 2  ) = Q  2 Q.  Let A be an intuitionistic fuzzy set on M be defined by 

  

1   =  0       0    =  0      

( 2 ) = 1/ 2  0 and 0     and   ( 2 ) = 1/ 4  0 and 0. 

1/ 5  0               1/ 2  0               

A A

if a b if a b

a b if a b a b if a b

if b if b

 

  
 

      
     

Define intuitionistic fuzzy sets  A1  and  A2  on Q  and 2 Q as follows: 

1 1

1   = 0 0   = 0 
 ( )    ,   ( )   ;    and 

1/ 2  0 1/ 4  0
A A

if a if a
a x a Q

if a if a
 

 
    

  
 

2 2

1   = 0 0   = 0 
 ( 2 )    ,   ( 2 ) ;   .

1/ 5  0 1/ 2  0
A A

if b if b
b b b Q

if b if b
 

 
    

  
 

Then A1 and A2 are intuitionistic fuzzy G-modules on Q and 2 Q respectively such that 

1 2 1 2
( 2 ) ( ) ( 2 )  and  ( 2 ) ( ) ( 2 ),   2 .A A A A A Aa b a b a b a b a b M               

Therefore, 1 2A A A  . Hence A is a semi-simple intuitionistic fuzzy G-module on M. 

Proposition (3.3) Let M be a semi-simple G-module with decomposition
1

n

i
i

M M


 . If 1 1
1

  
j

n

j
A A


   

2 2
1

and  
j

n

j
A A


   are two semi-simple intuitionistic fuzzy G-modules on  M, then 1 2A A  is also a 

semi-simple intuitionistic fuzzy G-module on M, where  denotes standard intuitionistic fuzzy 

intersection. 

Proof: The standard intuitionistic fuzzy intersection of fuzzy G- modules is an intuitionistic  fuzzy G-

module defined by     
1 2 1 21 2 ( ) ( ),  ( ) ,  where A A A AA A x x x   

 



 International Journal of Pure and Applied Researches; ijopaar.com; 2016 Vol. 1(2); ISSN: 2455-474X                                                                   
 

Paper ID: A16106; Semi-simple Intuitionistic Fuzzy G – Modules By P. K. Sharma; pp. 101-108; Date of Publication 
15th May 2016; Current Impact Factor: 0.832.   Page 104 
 

   
1 2 1 2 1 2 1 2

1

( ) min ( ),  ( )    and  ( ) max ( ),  ( ) ,   .
n

A A A A A A A A i

i

x x x x x x x x M      



    
 

 

 
1 2 1 2

11 12 1 21 22 2

11 21 12 22

1 2 1 2

1 1 2 2

( ) min ( ),  ( )

               =  min min{ ( ), ( ),  ......, ( )},  min{ ( ), ( ),  ......, ( )}

               = min min{ ( ), ( )},min{ ( ), ( )},....

n n

A A A A

A A A n A A A n

A A A A

x x x

x x x x x x

x x x x

  

     

   

 

 

 

 

1 2

11 21 12 22 1 2

1 2

1 2

1 2 1 2

......,min{ ( ), ( )}

               = min ( ), ( ),..........., ( )

               = min ( ), ( ),..........., ( ) , where B  is an IFG-module on M ,  .

 

n n

n n

n

A n A n

A A A A A A n

B B B n i i i i

x x

x x x

x x x A A i

 

  

  

  

  

1

              = ( )n

i
i

B

x



  

and 

 

 
1 2 1 2

11 12 1 21 22 2

11 21 12 22

1 2 1 2

1 1 2 2

( ) max ( ),  ( )

               =  max max{ ( ), ( ),  ......, ( )},  max{ ( ), ( ),  ......, ( )}

               = max max{ ( ), ( )},max{ ( ), ( )},....

n n

A A A A

A A A n A A A n

A A A A

x x x

x x x x x x

x x x x

  

     

   

 

 

 

 

1 2

11 21 12 22 1 2

1 2

1 2

1 2 1 2

......,max{ ( ), ( )}

               = max ( ), ( ),..........., ( )

               = max ( ), ( ),..........., ( ) , where B  is an IFG-module on M ,  .

 

n n

n n

n

A n A n

A A A A A A n

B B B n i i i i

x x

x x x

x x x A A i

 

  

  

  

  

1

              = ( ).n

i
i

B

x



1 2 1 2
1

1 2

So,  ,   where   is an intuitionistic fuzzy G-module on M ,  1,2,..., .

Hence   is a semi-simple intuitionistic fuzzy G-module on M. 

n

i i i i i
i

A A B B A A i n

A A


     



  

 Proposition (3.4) Any finite dimensional G- module with dimension at least 2 has a semi-simple 

intuitionistic fuzzy G-module. 

Proof: Assume that M is a G-module with dimension n  2, and {m1, m2,.…, mn } is a basis for M. 

Let Mi = span {mi}. Then M is semi-simple with 
1

n

i
i

M M


 .                                                        

Define an intuitionistic fuzzy set A on M by   

1 2 3

2 3 4

1 1 2 2

;   c  = 0                        1

;   c  0, c  = c = 0,....., c  = 01/ 2

;   c  0, c  = c = 0,....., c  = 01/ 3
(c m c m .......... c m )

.......................................

1/

1/ 1

i

n

n

A n n

if i

if

if

n

n




 

 

    






1

       
...........

;   c  0, c 0

;   c   0                           

n n

n

if

if

  


 

and  
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1 2

2 3

1 1 2 2

;   c  = 0                        0

;   c  0, c  = 0,....., c  = 01/ n 1

;   c  0, c  = 0,....., c  = 01/ n
(c m c m .......... c m )

...............................................

1/ 3

1/ 2

i

n

n

A n n

if i

if

if



 

 

    





1

. 
...

;   c 0,  c 0

;   c   0                           

n n

n

if

if

  



 

Define intuitionistic fuzzy sets  Ai on Mi  by  

1   = 0 0   = 0 
 ( )    and   ( )   ;   .

1/ i 1  0 1/ n i 2  0i iA A i

if x if x
x x x M

if x if x
 

 
    

                                            

Then  it can be easily checked that  

 
1

( ) min{ ( ) : 1,2,...., }  and ( ) max{ ( ) : 1,2,...., },where   = M.
i i

n

A A i i A A i i i i
i

m c m i n m c m i n m c m   


     

1
Thus    ,  hence the result. 

n

i
i

A A




 

4. Semi-simplicity and other properties  

                The semi-simplicity of an intuitionistic fuzzy G-module is related to properties like 

complete reducibility and intuitionistic fuzzy injectivity of intuitionistic fuzzy G-modules. These 

relationships are derived in the following propositions 

Proposition (4.1) For any finite dimensional G-module M, semi-simple intuitionistic fuzzy G-

modules on M are completely reducible. 

Proof: Let A be a semi-simple intuitionistic fuzzy G-module on M. Assume that 
1

n

i
i

M M


  and 

1

n

i
i

A A


 
 
where Ai are intuitionistic fuzzy G-modules on irreducible G-submodules Mi of M.                 

Let N be any G-submodule of M. Then N is spanned by the elements {m1, m2,…..........,ms} of a basis 

{m1, m2, …,ms, ms+1, …., mn} of M. Let N be the submodule spanned by the remaining basis vectors. 

Then M = N  N and for any
1

,
n

i

i

x x M


  we have

 

 
1 2

1 2 1 2

1 1

1 2

1 2 1 2

( ) min ( ), ( ),..........., ( )

          =  min min{ ( ), ( ),  ......, ( )},  min{ ( ), ( ),  ......, ( )}

          = min ( ),  ( )

     

n

s s s n

s n

i i
i i s

A A A A n

A A A s A s A s A n

A A

x x x x

x x x x x x

x x

   

     

 

 

  

 

 



  
 
  

 
1 2

1 2

1 2
1 1

     = min ( ), ( ) , where B  and  B  are IFG-modules on N and N  

          = ( )

s n

B B i i
i i s

B B

x x A A

x

 



  



   

 

and 
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1 2

1 2 1 2

1 1

1 2

1 2 1 2

( ) max ( ), ( ),..........., ( )

          =  max max{ ( ), ( ),  ......, ( )},  max{ ( ), ( ),  ......, ( )}

          = max ( ),  ( )

     

n

s s s n

s n

i i
i i s

A A A A n

A A A s A s A s A n

A A

x x x x

x x x x x x

x x

   

     

 

 

  

 

 



  
 
  

 
1 2

1 2

1 2
1 1

     = max ( ),  ( ) , where B  and  B  are IFG-modules on N and N   

          = ( ).

s n

B B i i
i i s

B B

x x A A

x

 



  



   

1 2Thus    . This shows that  is completely reducible.A B B A    

Proposition (4.2) A completely reducible intuitionistic fuzzy G-module A on n dimensional             

G-module M is semi-simple if 
1 2

1

min{ ( ), ( ),.................., ( )} and 
n

A i A A A n

i

x x x x   


 
 

 


1 2

1 1

max{ ( ), ( ),........., ( )},  for every .
n n

A i A A A n i

i i

x x x x x M   
 

 
  

 
   

Proof. Since A is completely reducible, so M is completely reducible and hence M is semi-simple. 

Let Mi be the G-submodule of M spanned by the basis vector {mi} of a basis  {m1, m2,…,mn} of M. 

Then 
1

n

i
i

M M


 ,  and  let 
1

n

i

i

x x M


  be any element. Then

 

 
1 2

1 2

( ) min{ ( ), ( ),.................., ( )} and 
.................(1)

( ) max{ ( ), ( ),....................., ( )}

A A i A A A n

A A i A A A n

x x x x x

x x x x x

    

    

  


  




                                          

As A is completely reducible, for the decomposition M1  N1 of M, where 
1

2

n

i
i

N M


  , A is 

decomposed into 1 1A A A   , where 1 1 and  A A   are intuitionistic fuzzy G-modules on M1 and N1 

respectively.

1 1
1 1

1 1 1 1 1 2 3Hence  ( ) min{ ( ), ( )} and ( ) max{ ( ), ( )},  where ... .A A A A nA A
x x x x x x x x x x     

 
         

Similarly, for every decomposition Mi  Ni of M, we can find intuitionistic fuzzy G-modules 

 and  I IA A  so that 

( ) min{ ( ), ( )} and ( ) max{ ( ), ( )}.....(2),  where N ,i 1,2,...,n.
i i

i i
A A i i A A i i i iA A

x x x x x x x     
 

     

Each of these n equations gives the inequalities

1 2 1 21 2 1 2( ) min{ ( ), ( ),......., ( )} and ( ) max{ ( ), ( ),......, ( )}.....(3)
n nA A A A n A A A A nx x x x x x x x             

Equation (2) gives that ( ) ( )   and    ( ) ( )  which together with (1) proves
i iA i A i A i A ix x x x    

   
1 2 1 21 2 1 2( ) min ( ), ( ),......., ( )  and  ( ) min ( ), ( ),......., ( ) ..(4)

n nA A A A n A A A A nx x x x x x x x        

Equation (3) and (4) together gives
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1 2 1 21 2 1 2( ) min{ ( ), ( ),......., ( )} and ( ) max{ ( ), ( ), ......, ( )}
n nA A A A n A A A A nx x x x x x x x        

Thereby making 
1

n

i
i

A A


  , where  Ai
’s are intuitionistic fuzzy G-modules on Mi. This proves that A 

is semi-simple.   

Proposition (4.3) If  M*  is  a  semi-simple  G-module,  then  M  is  M*-injective for every  G-

module M. 

Proof. Semi-simplicity of M* gives
*

1

n

i
i

M M


 . Let N* be any G-submodule of M* and φ be a 

homomorphism from N* to  M.                                                                                                                               

Case (i) If  N*  = {0}, then φ = 0 and ψ = 0 is an extension of  φ from M*  to M.  

Case (ii) If N* = Mi , then     ψ( 1 1 2 2c m c m .......... c mn n   ) = φ (ci mi ) is an extension of φ from 

M* to M.
                                                                                                                                             

Case (iii) If  
*

1

k

i
i

N M


  , k < n,  then                                                                                                     

ψ( 1 1 2 2c m c m .......... c mn n   ) = φ( 1 1 2 2c m c m .......... c mk k   ) gives the required extension. 

This proves that every G-submodule M is M*-injective.  

Proposition (4.4) If G is a finite group and B is a semi-simple intuitionistic fuzzy G-module on M*, 

then for any  intuitionistic fuzzy G-module A on M,  A is B - injective if and only if A  is Bi - injective 

for every i.                                                                                                                                        

Proof.  Since  B  is a semi-simple  intuitionistic fuzzy  G-module  on  M* . So, 
*

1

n

i
i

M M


 ,  and                        

1

n

i
i

B B


  ,  where Bi is an intuitionistic fuzzy G-module on  Mi .                                                                   

Let us first assume that A is B-injective, then we have 

(i)  M is M*- injective and         

(ii) µB(m)   µA((m))  and B(m)  A((m)),   Hom (M, M) and m M . 

Since M is M*- injective and Mi is a G-submodule of M. Therefore,  M is Mi-injective, i =1, 2,.....,n   

and  (iii)  ( ) ( ( ))  and  ( ) ( ( ))  1,2,..., .
i iB i B i B i B im m m m i n                                                                 

Let  be any homomorphism in Hom(Mi, M). As M is M*- injective, every homomorphism from Mi 

to M can be extended as a homomorphism from M* to M.                                                                                           

Let  is an extension of  to Hom( M*, M). Then from (i), (ii) and (iii), we get                                                                                                                 

( ) ( ( )) ( ( ))  and   ( ) ( ( )) ( ( )),   Hom(M*, M).
i iB i A i A B i A i Am m m m m m               

 This proves that A is Bi-injective for every i = 1,2,…..,n.  

Conversely, assume that A is Bi-injective for every i = 1,2,…..,n. Then by proposition (4.3) we have 

M is M*-injective. Let  Hom (M, M) and m M* . Then   
1

 = ,
n

i i i
i

m m m M

  .
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1 2

1 2

1 2

1 2

Now,  ( ) min ( ), ( ),........, ( ) ( )    

and    ( ) max ( ), ( ),........, ( ) ( ),    = 1, 2,....., .

n i

n i

B B B B n B i

B B B B n B i

m m m m m

m m m m v m i n

    

   

 

  
                                                  

Since A is Bi- injective, therefore we have

( ) ( ( ))  and   ( ) ( ( )),   1,2,....., . 

Hence  ( ) min{ ( ( )) :  1,2,..., }  and ( ) max{ ( ( )) :  1,2,..., }. 

i iB i A i B i A i

B A i B A i

m m m m i n

m m i n m m i n

     

     

   

   
 

1 1 1

1 1 1

Therefore,  ( ) { ( ) ( ) ..... ( )} ( ( ))

 and    ( ) { ( ) ( ) ..... ( )} ( ( )).

i.e.,  ( ) ( ( ))  and   ( ) ( ( )),   ( *,M) and *.

Thus  A is B .

i

i

i i

B A A

B A A

B A B A

i

m m m m m

m m m m m

m m m m Hom M m M

injective
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